diff --git a/core/java/android/net/SntpClient.java b/core/java/android/net/SntpClient.java
index f6852e6814393efe4312ced89bc89a3969d6ca46..0eb4cf3ecadf97c724ba21a7ae4bf5908c606ae9 100644
--- a/core/java/android/net/SntpClient.java
+++ b/core/java/android/net/SntpClient.java
@@ -17,16 +17,26 @@
 package android.net;
 
 import android.compat.annotation.UnsupportedAppUsage;
+import android.net.sntp.Duration64;
+import android.net.sntp.Timestamp64;
 import android.os.SystemClock;
 import android.util.Log;
+import android.util.Slog;
 
+import com.android.internal.annotations.VisibleForTesting;
 import com.android.internal.util.TrafficStatsConstants;
 
 import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 import java.net.UnknownHostException;
-import java.util.Arrays;
+import java.security.NoSuchAlgorithmException;
+import java.security.SecureRandom;
+import java.time.Duration;
+import java.time.Instant;
+import java.util.Objects;
+import java.util.Random;
+import java.util.function.Supplier;
 
 /**
  * {@hide}
@@ -60,17 +70,21 @@ public class SntpClient {
     private static final int NTP_STRATUM_DEATH = 0;
     private static final int NTP_STRATUM_MAX = 15;
 
-    // Number of seconds between Jan 1, 1900 and Jan 1, 1970
-    // 70 years plus 17 leap days
-    private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
+    // The source of the current system clock time, replaceable for testing.
+    private final Supplier<Instant> mSystemTimeSupplier;
 
-    // system time computed from NTP server response
+    private final Random mRandom;
+
+    // The last offset calculated from an NTP server response
+    private long mClockOffset;
+
+    // The last system time computed from an NTP server response
     private long mNtpTime;
 
-    // value of SystemClock.elapsedRealtime() corresponding to mNtpTime
+    // The value of SystemClock.elapsedRealtime() corresponding to mNtpTime / mClockOffset
     private long mNtpTimeReference;
 
-    // round trip time in milliseconds
+    // The round trip (network) time in milliseconds
     private long mRoundTripTime;
 
     private static class InvalidServerReplyException extends Exception {
@@ -81,6 +95,13 @@ public class SntpClient {
 
     @UnsupportedAppUsage
     public SntpClient() {
+        this(Instant::now, defaultRandom());
+    }
+
+    @VisibleForTesting
+    public SntpClient(Supplier<Instant> systemTimeSupplier, Random random) {
+        mSystemTimeSupplier = Objects.requireNonNull(systemTimeSupplier);
+        mRandom = Objects.requireNonNull(random);
     }
 
     /**
@@ -126,9 +147,13 @@ public class SntpClient {
             buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3);
 
             // get current time and write it to the request packet
-            final long requestTime = System.currentTimeMillis();
+            final Instant requestTime = mSystemTimeSupplier.get();
+            final Timestamp64 requestTimestamp = Timestamp64.fromInstant(requestTime);
+
+            final Timestamp64 randomizedRequestTimestamp =
+                    requestTimestamp.randomizeSubMillis(mRandom);
             final long requestTicks = SystemClock.elapsedRealtime();
-            writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime);
+            writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, randomizedRequestTimestamp);
 
             socket.send(request);
 
@@ -136,42 +161,44 @@ public class SntpClient {
             DatagramPacket response = new DatagramPacket(buffer, buffer.length);
             socket.receive(response);
             final long responseTicks = SystemClock.elapsedRealtime();
-            final long responseTime = requestTime + (responseTicks - requestTicks);
+            final Instant responseTime = requestTime.plusMillis(responseTicks - requestTicks);
+            final Timestamp64 responseTimestamp = Timestamp64.fromInstant(responseTime);
 
             // extract the results
             final byte leap = (byte) ((buffer[0] >> 6) & 0x3);
             final byte mode = (byte) (buffer[0] & 0x7);
             final int stratum = (int) (buffer[1] & 0xff);
-            final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
-            final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
-            final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
-            final long referenceTime = readTimeStamp(buffer, REFERENCE_TIME_OFFSET);
+            final Timestamp64 referenceTimestamp = readTimeStamp(buffer, REFERENCE_TIME_OFFSET);
+            final Timestamp64 originateTimestamp = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET);
+            final Timestamp64 receiveTimestamp = readTimeStamp(buffer, RECEIVE_TIME_OFFSET);
+            final Timestamp64 transmitTimestamp = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET);
 
             /* Do validation according to RFC */
-            // TODO: validate originateTime == requestTime.
-            checkValidServerReply(leap, mode, stratum, transmitTime, referenceTime);
-
-            long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime);
-            // receiveTime = originateTime + transit + skew
-            // responseTime = transmitTime + transit - skew
-            // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2
-            //             = ((originateTime + transit + skew - originateTime) +
-            //                (transmitTime - (transmitTime + transit - skew)))/2
-            //             = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2
-            //             = (transit + skew - transit + skew)/2
-            //             = (2 * skew)/2 = skew
-            long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2;
-            EventLogTags.writeNtpSuccess(address.toString(), roundTripTime, clockOffset);
+            checkValidServerReply(leap, mode, stratum, transmitTimestamp, referenceTimestamp,
+                    randomizedRequestTimestamp, originateTimestamp);
+
+            long totalTransactionDurationMillis = responseTicks - requestTicks;
+            long serverDurationMillis =
+                    Duration64.between(receiveTimestamp, transmitTimestamp).toDuration().toMillis();
+            long roundTripTimeMillis = totalTransactionDurationMillis - serverDurationMillis;
+
+            Duration clockOffsetDuration = calculateClockOffset(requestTimestamp,
+                    receiveTimestamp, transmitTimestamp, responseTimestamp);
+            long clockOffsetMillis = clockOffsetDuration.toMillis();
+
+            EventLogTags.writeNtpSuccess(
+                    address.toString(), roundTripTimeMillis, clockOffsetMillis);
             if (DBG) {
-                Log.d(TAG, "round trip: " + roundTripTime + "ms, " +
-                        "clock offset: " + clockOffset + "ms");
+                Log.d(TAG, "round trip: " + roundTripTimeMillis + "ms, "
+                        + "clock offset: " + clockOffsetMillis + "ms");
             }
 
             // save our results - use the times on this side of the network latency
             // (response rather than request time)
-            mNtpTime = responseTime + clockOffset;
+            mClockOffset = clockOffsetMillis;
+            mNtpTime = responseTime.plus(clockOffsetDuration).toEpochMilli();
             mNtpTimeReference = responseTicks;
-            mRoundTripTime = roundTripTime;
+            mRoundTripTime = roundTripTimeMillis;
         } catch (Exception e) {
             EventLogTags.writeNtpFailure(address.toString(), e.toString());
             if (DBG) Log.d(TAG, "request time failed: " + e);
@@ -186,6 +213,28 @@ public class SntpClient {
         return true;
     }
 
+    /** Performs the NTP clock offset calculation. */
+    @VisibleForTesting
+    public static Duration calculateClockOffset(Timestamp64 clientRequestTimestamp,
+            Timestamp64 serverReceiveTimestamp, Timestamp64 serverTransmitTimestamp,
+            Timestamp64 clientResponseTimestamp) {
+        // According to RFC4330:
+        // t is the system clock offset (the adjustment we are trying to find)
+        // t = ((T2 - T1) + (T3 - T4)) / 2
+        //
+        // Which is:
+        // t = (([server]receiveTimestamp - [client]requestTimestamp)
+        //       + ([server]transmitTimestamp - [client]responseTimestamp)) / 2
+        //
+        // See the NTP spec and tests: the numeric types used are deliberate:
+        // + Duration64.between() uses 64-bit arithmetic (32-bit for the seconds).
+        // + plus() / dividedBy() use Duration, which isn't the double precision floating point
+        //   used in NTPv4, but is good enough.
+        return Duration64.between(clientRequestTimestamp, serverReceiveTimestamp)
+                .plus(Duration64.between(clientResponseTimestamp, serverTransmitTimestamp))
+                .dividedBy(2);
+    }
+
     @Deprecated
     @UnsupportedAppUsage
     public boolean requestTime(String host, int timeout) {
@@ -193,6 +242,14 @@ public class SntpClient {
         return false;
     }
 
+    /**
+     * Returns the offset calculated to apply to the client clock to arrive at {@link #getNtpTime()}
+     */
+    @VisibleForTesting
+    public long getClockOffset() {
+        return mClockOffset;
+    }
+
     /**
      * Returns the time computed from the NTP transaction.
      *
@@ -225,8 +282,9 @@ public class SntpClient {
     }
 
     private static void checkValidServerReply(
-            byte leap, byte mode, int stratum, long transmitTime, long referenceTime)
-            throws InvalidServerReplyException {
+            byte leap, byte mode, int stratum, Timestamp64 transmitTimestamp,
+            Timestamp64 referenceTimestamp, Timestamp64 randomizedRequestTimestamp,
+            Timestamp64 originateTimestamp) throws InvalidServerReplyException {
         if (leap == NTP_LEAP_NOSYNC) {
             throw new InvalidServerReplyException("unsynchronized server");
         }
@@ -236,73 +294,68 @@ public class SntpClient {
         if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) {
             throw new InvalidServerReplyException("untrusted stratum: " + stratum);
         }
-        if (transmitTime == 0) {
-            throw new InvalidServerReplyException("zero transmitTime");
+        if (!randomizedRequestTimestamp.equals(originateTimestamp)) {
+            throw new InvalidServerReplyException(
+                    "originateTimestamp != randomizedRequestTimestamp");
+        }
+        if (transmitTimestamp.equals(Timestamp64.ZERO)) {
+            throw new InvalidServerReplyException("zero transmitTimestamp");
         }
-        if (referenceTime == 0) {
-            throw new InvalidServerReplyException("zero reference timestamp");
+        if (referenceTimestamp.equals(Timestamp64.ZERO)) {
+            throw new InvalidServerReplyException("zero referenceTimestamp");
         }
     }
 
     /**
      * Reads an unsigned 32 bit big endian number from the given offset in the buffer.
      */
-    private long read32(byte[] buffer, int offset) {
-        byte b0 = buffer[offset];
-        byte b1 = buffer[offset+1];
-        byte b2 = buffer[offset+2];
-        byte b3 = buffer[offset+3];
-
-        // convert signed bytes to unsigned values
-        int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0);
-        int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1);
-        int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2);
-        int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3);
-
-        return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3;
+    private long readUnsigned32(byte[] buffer, int offset) {
+        int i0 = buffer[offset++] & 0xFF;
+        int i1 = buffer[offset++] & 0xFF;
+        int i2 = buffer[offset++] & 0xFF;
+        int i3 = buffer[offset] & 0xFF;
+
+        int bits = (i0 << 24) | (i1 << 16) | (i2 << 8) | i3;
+        return bits & 0xFFFF_FFFFL;
     }
 
     /**
-     * Reads the NTP time stamp at the given offset in the buffer and returns
-     * it as a system time (milliseconds since January 1, 1970).
+     * Reads the NTP time stamp from the given offset in the buffer.
      */
-    private long readTimeStamp(byte[] buffer, int offset) {
-        long seconds = read32(buffer, offset);
-        long fraction = read32(buffer, offset + 4);
-        // Special case: zero means zero.
-        if (seconds == 0 && fraction == 0) {
-            return 0;
-        }
-        return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L);
+    private Timestamp64 readTimeStamp(byte[] buffer, int offset) {
+        long seconds = readUnsigned32(buffer, offset);
+        int fractionBits = (int) readUnsigned32(buffer, offset + 4);
+        return Timestamp64.fromComponents(seconds, fractionBits);
     }
 
     /**
-     * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp
-     * at the given offset in the buffer.
+     * Writes the NTP time stamp at the given offset in the buffer.
      */
-    private void writeTimeStamp(byte[] buffer, int offset, long time) {
-        // Special case: zero means zero.
-        if (time == 0) {
-            Arrays.fill(buffer, offset, offset + 8, (byte) 0x00);
-            return;
-        }
-
-        long seconds = time / 1000L;
-        long milliseconds = time - seconds * 1000L;
-        seconds += OFFSET_1900_TO_1970;
-
+    private void writeTimeStamp(byte[] buffer, int offset, Timestamp64 timestamp) {
+        long seconds = timestamp.getEraSeconds();
         // write seconds in big endian format
-        buffer[offset++] = (byte)(seconds >> 24);
-        buffer[offset++] = (byte)(seconds >> 16);
-        buffer[offset++] = (byte)(seconds >> 8);
-        buffer[offset++] = (byte)(seconds >> 0);
+        buffer[offset++] = (byte) (seconds >>> 24);
+        buffer[offset++] = (byte) (seconds >>> 16);
+        buffer[offset++] = (byte) (seconds >>> 8);
+        buffer[offset++] = (byte) (seconds);
 
-        long fraction = milliseconds * 0x100000000L / 1000L;
+        int fractionBits = timestamp.getFractionBits();
         // write fraction in big endian format
-        buffer[offset++] = (byte)(fraction >> 24);
-        buffer[offset++] = (byte)(fraction >> 16);
-        buffer[offset++] = (byte)(fraction >> 8);
-        // low order bits should be random data
-        buffer[offset++] = (byte)(Math.random() * 255.0);
+        buffer[offset++] = (byte) (fractionBits >>> 24);
+        buffer[offset++] = (byte) (fractionBits >>> 16);
+        buffer[offset++] = (byte) (fractionBits >>> 8);
+        buffer[offset] = (byte) (fractionBits);
+    }
+
+    private static Random defaultRandom() {
+        Random random;
+        try {
+            random = SecureRandom.getInstanceStrong();
+        } catch (NoSuchAlgorithmException e) {
+            // This should never happen.
+            Slog.wtf(TAG, "Unable to access SecureRandom", e);
+            random = new Random(System.currentTimeMillis());
+        }
+        return random;
     }
 }
diff --git a/core/java/android/net/sntp/Duration64.java b/core/java/android/net/sntp/Duration64.java
new file mode 100644
index 0000000000000000000000000000000000000000..939b2892a18fa43aec4b8ea7aa8eb7cc5473425c
--- /dev/null
+++ b/core/java/android/net/sntp/Duration64.java
@@ -0,0 +1,141 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.net.sntp;
+
+import java.time.Duration;
+
+/**
+ * A type similar to {@link Timestamp64} but used when calculating the difference between two
+ * timestamps. As such, it is a signed type, but still uses 64-bits in total and so can only
+ * represent half the magnitude of {@link Timestamp64}.
+ *
+ * <p>See <a href="https://www.eecis.udel.edu/~mills/time.html">4. Time Difference Calculations</a>.
+ *
+ * @hide
+ */
+public class Duration64 {
+
+    public static final Duration64 ZERO = new Duration64(0);
+    private final long mBits;
+
+    private Duration64(long bits) {
+        this.mBits = bits;
+    }
+
+    /**
+     * Returns the difference between two 64-bit NTP timestamps as a {@link Duration64}, as
+     * described in the NTP spec. The times represented by the timestamps have to be within {@link
+     * Timestamp64#MAX_SECONDS_IN_ERA} (~68 years) of each other for the calculation to produce a
+     * correct answer.
+     */
+    public static Duration64 between(Timestamp64 startInclusive, Timestamp64 endExclusive) {
+        long oneBits = (startInclusive.getEraSeconds() << 32)
+                | (startInclusive.getFractionBits() & 0xFFFF_FFFFL);
+        long twoBits = (endExclusive.getEraSeconds() << 32)
+                | (endExclusive.getFractionBits() & 0xFFFF_FFFFL);
+        long resultBits = twoBits - oneBits;
+        return new Duration64(resultBits);
+    }
+
+    /**
+     * Add two {@link Duration64} instances together. This performs the calculation in {@link
+     * Duration} and returns a {@link Duration} to increase the magnitude of accepted arguments,
+     * since {@link Duration64} only supports signed 32-bit seconds. The use of {@link Duration}
+     * limits precision to nanoseconds.
+     */
+    public Duration plus(Duration64 other) {
+        // From https://www.eecis.udel.edu/~mills/time.html:
+        // "The offset and delay calculations require sums and differences of these raw timestamp
+        // differences that can span no more than from 34 years in the future to 34 years in the
+        // past without overflow. This is a fundamental limitation in 64-bit integer calculations.
+        //
+        // In the NTPv4 reference implementation, all calculations involving offset and delay values
+        // use 64-bit floating double arithmetic, with the exception of raw timestamp subtraction,
+        // as mentioned above. The raw timestamp differences are then converted to 64-bit floating
+        // double format without loss of precision or chance of overflow in subsequent
+        // calculations."
+        //
+        // Here, we use Duration instead, which provides sufficient range, but loses precision below
+        // nanos.
+        return this.toDuration().plus(other.toDuration());
+    }
+
+    /**
+     * Returns a {@link Duration64} equivalent of the supplied duration, if the magnitude can be
+     * represented. Because {@link Duration64} uses a fixed point type for sub-second values it
+     * cannot represent all nanosecond values precisely and so the conversion can be lossy.
+     *
+     * @throws IllegalArgumentException if the supplied duration is too big to be represented
+     */
+    public static Duration64 fromDuration(Duration duration) {
+        long seconds = duration.getSeconds();
+        if (seconds < Integer.MIN_VALUE || seconds > Integer.MAX_VALUE) {
+            throw new IllegalArgumentException();
+        }
+        long bits = (seconds << 32)
+                | (Timestamp64.nanosToFractionBits(duration.getNano()) & 0xFFFF_FFFFL);
+        return new Duration64(bits);
+    }
+
+    /**
+     * Returns a {@link Duration} equivalent of this duration. Because {@link Duration64} uses a
+     * fixed point type for sub-second values it can values smaller than nanosecond precision and so
+     * the conversion can be lossy.
+     */
+    public Duration toDuration() {
+        int seconds = getSeconds();
+        int nanos = getNanos();
+        return Duration.ofSeconds(seconds, nanos);
+    }
+
+    @Override
+    public boolean equals(Object o) {
+        if (this == o) {
+            return true;
+        }
+        if (o == null || getClass() != o.getClass()) {
+            return false;
+        }
+        Duration64 that = (Duration64) o;
+        return mBits == that.mBits;
+    }
+
+    @Override
+    public int hashCode() {
+        return java.util.Objects.hash(mBits);
+    }
+
+    @Override
+    public String toString() {
+        Duration duration = toDuration();
+        return Long.toHexString(mBits)
+                + "(" + duration.getSeconds() + "s " + duration.getNano() + "ns)";
+    }
+
+    /**
+     * Returns the <em>signed</em> seconds in this duration.
+     */
+    public int getSeconds() {
+        return (int) (mBits >> 32);
+    }
+
+    /**
+     * Returns the <em>unsigned</em> nanoseconds in this duration (truncated).
+     */
+    public int getNanos() {
+        return Timestamp64.fractionBitsToNanos((int) (mBits & 0xFFFF_FFFFL));
+    }
+}
diff --git a/core/java/android/net/sntp/Timestamp64.java b/core/java/android/net/sntp/Timestamp64.java
new file mode 100644
index 0000000000000000000000000000000000000000..81a33108ed85054f278f9135dceb6e1162fbd074
--- /dev/null
+++ b/core/java/android/net/sntp/Timestamp64.java
@@ -0,0 +1,186 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.net.sntp;
+
+import com.android.internal.annotations.VisibleForTesting;
+
+import java.time.Instant;
+import java.util.Objects;
+import java.util.Random;
+
+/**
+ * The 64-bit type ("timestamp") that NTP uses to represent a point in time. It only holds the
+ * lowest 32-bits of the number of seconds since 1900-01-01 00:00:00. Consequently, to turn an
+ * instance into an unambiguous point in time the era number must be known. Era zero runs from
+ * 1900-01-01 00:00:00 to a date in 2036.
+ *
+ * It stores sub-second values using a 32-bit fixed point type, so it can resolve values smaller
+ * than a nanosecond, but is imprecise (i.e. it truncates).
+ *
+ * See also <a href=https://www.eecis.udel.edu/~mills/y2k.html>NTP docs</a>.
+ *
+ * @hide
+ */
+public final class Timestamp64 {
+
+    public static final Timestamp64 ZERO = fromComponents(0, 0);
+    static final int SUB_MILLIS_BITS_TO_RANDOMIZE = 32 - 10;
+
+    // Number of seconds between Jan 1, 1900 and Jan 1, 1970
+    // 70 years plus 17 leap days
+    static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L;
+    static final long MAX_SECONDS_IN_ERA = 0xFFFF_FFFFL;
+    static final long SECONDS_IN_ERA = MAX_SECONDS_IN_ERA + 1;
+
+    static final int NANOS_PER_SECOND = 1_000_000_000;
+
+    /** Creates a {@link Timestamp64} from the seconds and fraction components. */
+    public static Timestamp64 fromComponents(long eraSeconds, int fractionBits) {
+        return new Timestamp64(eraSeconds, fractionBits);
+    }
+
+    /** Creates a {@link Timestamp64} by decoding a string in the form "e4dc720c.4d4fc9eb". */
+    public static Timestamp64 fromString(String string) {
+        final int requiredLength = 17;
+        if (string.length() != requiredLength || string.charAt(8) != '.') {
+            throw new IllegalArgumentException(string);
+        }
+        String eraSecondsString = string.substring(0, 8);
+        String fractionString = string.substring(9);
+        long eraSeconds = Long.parseLong(eraSecondsString, 16);
+
+        // Use parseLong() because the type is unsigned. Integer.parseInt() will reject 0x70000000
+        // or above as being out of range.
+        long fractionBitsAsLong = Long.parseLong(fractionString, 16);
+        if (fractionBitsAsLong < 0 || fractionBitsAsLong > 0xFFFFFFFFL) {
+            throw new IllegalArgumentException("Invalid fractionBits:" + fractionString);
+        }
+        return new Timestamp64(eraSeconds, (int) fractionBitsAsLong);
+    }
+
+    /**
+     * Converts an {@link Instant} into a {@link Timestamp64}. This is lossy: Timestamp64 only
+     * contains the number of seconds in a given era, but the era is not stored. Also, sub-second
+     * values are not stored precisely.
+     */
+    public static Timestamp64 fromInstant(Instant instant) {
+        long ntpEraSeconds = instant.getEpochSecond() + OFFSET_1900_TO_1970;
+        if (ntpEraSeconds < 0) {
+            ntpEraSeconds = SECONDS_IN_ERA - (-ntpEraSeconds % SECONDS_IN_ERA);
+        }
+        ntpEraSeconds %= SECONDS_IN_ERA;
+
+        long nanos = instant.getNano();
+        int fractionBits = nanosToFractionBits(nanos);
+
+        return new Timestamp64(ntpEraSeconds, fractionBits);
+    }
+
+    private final long mEraSeconds;
+    private final int mFractionBits;
+
+    private Timestamp64(long eraSeconds, int fractionBits) {
+        if (eraSeconds < 0 || eraSeconds > MAX_SECONDS_IN_ERA) {
+            throw new IllegalArgumentException(
+                    "Invalid parameters. seconds=" + eraSeconds + ", fraction=" + fractionBits);
+        }
+        this.mEraSeconds = eraSeconds;
+        this.mFractionBits = fractionBits;
+    }
+
+    /** Returns the number of seconds in the NTP era. */
+    public long getEraSeconds() {
+        return mEraSeconds;
+    }
+
+    /** Returns the fraction of a second as 32-bit, unsigned fixed-point bits. */
+    public int getFractionBits() {
+        return mFractionBits;
+    }
+
+    @Override
+    public String toString() {
+        return String.format("%08x.%08x", mEraSeconds, mFractionBits);
+    }
+
+    /** Returns the instant represented by this value in the specified NTP era. */
+    public Instant toInstant(int ntpEra) {
+        long secondsSinceEpoch = mEraSeconds - OFFSET_1900_TO_1970;
+        secondsSinceEpoch += ntpEra * SECONDS_IN_ERA;
+
+        int nanos = fractionBitsToNanos(mFractionBits);
+        return Instant.ofEpochSecond(secondsSinceEpoch, nanos);
+    }
+
+    @Override
+    public boolean equals(Object o) {
+        if (this == o) {
+            return true;
+        }
+        if (o == null || getClass() != o.getClass()) {
+            return false;
+        }
+        Timestamp64 that = (Timestamp64) o;
+        return mEraSeconds == that.mEraSeconds && mFractionBits == that.mFractionBits;
+    }
+
+    @Override
+    public int hashCode() {
+        return Objects.hash(mEraSeconds, mFractionBits);
+    }
+
+    static int fractionBitsToNanos(int fractionBits) {
+        long fractionBitsLong = fractionBits & 0xFFFF_FFFFL;
+        return (int) ((fractionBitsLong * NANOS_PER_SECOND) >>> 32);
+    }
+
+    static int nanosToFractionBits(long nanos) {
+        if (nanos > NANOS_PER_SECOND) {
+            throw new IllegalArgumentException();
+        }
+        return (int) ((nanos << 32) / NANOS_PER_SECOND);
+    }
+
+    /**
+     * Randomizes the fraction bits that represent sub-millisecond values. i.e. the randomization
+     * won't change the number of milliseconds represented after truncation. This is used to
+     * implement the part of the NTP spec that calls for clients with millisecond accuracy clocks
+     * to send randomized LSB values rather than zeros.
+     */
+    public Timestamp64 randomizeSubMillis(Random random) {
+        int randomizedFractionBits =
+                randomizeLowestBits(random, this.mFractionBits, SUB_MILLIS_BITS_TO_RANDOMIZE);
+        return new Timestamp64(mEraSeconds, randomizedFractionBits);
+    }
+
+    /**
+     * Randomizes the specified number of LSBs in {@code value} by using replacement bits from
+     * {@code Random.getNextInt()}.
+     */
+    @VisibleForTesting
+    public static int randomizeLowestBits(Random random, int value, int bitsToRandomize) {
+        if (bitsToRandomize < 1 || bitsToRandomize >= Integer.SIZE) {
+            // There's no point in randomizing all bits or none of the bits.
+            throw new IllegalArgumentException(Integer.toString(bitsToRandomize));
+        }
+
+        int upperBitMask = 0xFFFF_FFFF << bitsToRandomize;
+        int lowerBitMask = ~upperBitMask;
+
+        int randomValue = random.nextInt();
+        return (value & upperBitMask) | (randomValue & lowerBitMask);
+    }
+}
diff --git a/core/tests/coretests/src/android/net/SntpClientTest.java b/core/tests/coretests/src/android/net/SntpClientTest.java
index bf9978c2c4472b67c014432ecf2716db533433ec..b400b9bf41dd137066e97363ba621d9838c0c672 100644
--- a/core/tests/coretests/src/android/net/SntpClientTest.java
+++ b/core/tests/coretests/src/android/net/SntpClientTest.java
@@ -22,7 +22,10 @@ import static junit.framework.Assert.assertTrue;
 
 import static org.mockito.Mockito.CALLS_REAL_METHODS;
 import static org.mockito.Mockito.mock;
+import static org.mockito.Mockito.when;
 
+import android.net.sntp.Duration64;
+import android.net.sntp.Timestamp64;
 import android.util.Log;
 
 import androidx.test.runner.AndroidJUnit4;
@@ -38,7 +41,13 @@ import java.net.DatagramPacket;
 import java.net.DatagramSocket;
 import java.net.InetAddress;
 import java.net.SocketException;
+import java.time.Duration;
+import java.time.Instant;
+import java.time.LocalDateTime;
+import java.time.ZoneOffset;
 import java.util.Arrays;
+import java.util.Random;
+import java.util.function.Supplier;
 
 @RunWith(AndroidJUnit4.class)
 public class SntpClientTest {
@@ -54,41 +63,232 @@ public class SntpClientTest {
     //
     // Server, Leap indicator:  (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20
     // Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41
-    //   Reference Timestamp:  3653932102.507969856 (2015/10/15 14:08:22)
-    //   Originator Timestamp: 3653932113.576327741 (2015/10/15 14:08:33)
-    //   Receive Timestamp:    3653932113.581012725 (2015/10/15 14:08:33)
-    //   Transmit Timestamp:   3653932113.581012725 (2015/10/15 14:08:33)
+    //   Reference Timestamp:
+    //     d9ca9446.820a5000 / ERA0: 2015-10-15 21:08:22 UTC / ERA1: 2151-11-22 03:36:38 UTC
+    //   Originator Timestamp:
+    //     d9ca9451.938a3771 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
+    //   Receive Timestamp:
+    //     d9ca9451.94bd3fff / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
+    //   Transmit Timestamp:
+    //     d9ca9451.94bd4001 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC
+    //
     //     Originator - Receive Timestamp:  +0.004684958
     //     Originator - Transmit Timestamp: +0.004684958
-    private static final String WORKING_VERSION4 =
-            "240206ec" +
-            "00000165" +
-            "000000b2" +
-            "ddfd4729" +
-            "d9ca9446820a5000" +
-            "d9ca9451938a3771" +
-            "d9ca945194bd3fff" +
-            "d9ca945194bd4001";
+    private static final String LATE_ERA_RESPONSE =
+            "240206ec"
+                    + "00000165"
+                    + "000000b2"
+                    + "ddfd4729"
+                    + "d9ca9446820a5000"
+                    + "d9ca9451938a3771"
+                    + "d9ca945194bd3fff"
+                    + "d9ca945194bd4001";
+
+    /** This is the actual UTC time in the server if it is in ERA0 */
+    private static final Instant LATE_ERA0_SERVER_TIME =
+            calculateIdealServerTime("d9ca9451.94bd3fff", "d9ca9451.94bd4001", 0);
+
+    /**
+     * This is the Unix epoch time matches the originate timestamp from {@link #LATE_ERA_RESPONSE}
+     * when interpreted as an ERA0 timestamp.
+     */
+    private static final Instant LATE_ERA0_REQUEST_TIME =
+            Timestamp64.fromString("d9ca9451.938a3771").toInstant(0);
+
+    // A tweaked version of the ERA0 response to represent an ERA 1 response.
+    //
+    // Server, Leap indicator:  (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20
+    // Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41
+    //   Reference Timestamp:
+    //     1db2d246.820a5000 / ERA0: 1915-10-16 21:08:22 UTC / ERA1: 2051-11-22 03:36:38 UTC
+    //   Originate Timestamp:
+    //     1db2d251.938a3771 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
+    //   Receive Timestamp:
+    //     1db2d251.94bd3fff / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
+    //   Transmit Timestamp:
+    //     1db2d251.94bd4001 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC
+    //
+    //     Originate - Receive Timestamp:  +0.004684958
+    //     Originate - Transmit Timestamp: +0.004684958
+    private static final String EARLY_ERA_RESPONSE =
+            "240206ec"
+                    + "00000165"
+                    + "000000b2"
+                    + "ddfd4729"
+                    + "1db2d246820a5000"
+                    + "1db2d251938a3771"
+                    + "1db2d25194bd3fff"
+                    + "1db2d25194bd4001";
+
+    /** This is the actual UTC time in the server if it is in ERA0 */
+    private static final Instant EARLY_ERA1_SERVER_TIME =
+            calculateIdealServerTime("1db2d251.94bd3fff", "1db2d251.94bd4001", 1);
+
+    /**
+     * This is the Unix epoch time matches the originate timestamp from {@link #EARLY_ERA_RESPONSE}
+     * when interpreted as an ERA1 timestamp.
+     */
+    private static final Instant EARLY_ERA1_REQUEST_TIME =
+            Timestamp64.fromString("1db2d251.938a3771").toInstant(1);
 
     private SntpTestServer mServer;
     private SntpClient mClient;
     private Network mNetwork;
+    private Supplier<Instant> mSystemTimeSupplier;
+    private Random mRandom;
 
+    @SuppressWarnings("unchecked")
     @Before
     public void setUp() throws Exception {
+        mServer = new SntpTestServer();
+
         // A mock network has NETID_UNSET, which allows the test to run, with a loopback server,
         // even w/o external networking.
         mNetwork = mock(Network.class, CALLS_REAL_METHODS);
-        mServer = new SntpTestServer();
-        mClient = new SntpClient();
+        mRandom = mock(Random.class);
+
+        mSystemTimeSupplier = mock(Supplier.class);
+        // Returning zero means the "randomized" bottom bits of the clients transmit timestamp /
+        // server's originate timestamp will be zeros.
+        when(mRandom.nextInt()).thenReturn(0);
+        mClient = new SntpClient(mSystemTimeSupplier, mRandom);
+    }
+
+    /** Tests when the client and server are in ERA0. b/199481251. */
+    @Test
+    public void testRequestTime_era0ClientEra0RServer() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false));
+        assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
+        assertEquals(1, mServer.numRequestsReceived());
+        assertEquals(1, mServer.numRepliesSent());
+
+        checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient);
     }
 
+    /** Tests when the client is behind the server and in the previous ERA. b/199481251. */
     @Test
-    public void testBasicWorkingSntpClientQuery() throws Exception {
-        mServer.setServerReply(HexEncoding.decode(WORKING_VERSION4.toCharArray(), false));
+    public void testRequestTime_era0ClientEra1Server() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false));
         assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
         assertEquals(1, mServer.numRequestsReceived());
         assertEquals(1, mServer.numRepliesSent());
+
+        checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient);
+
+    }
+
+    /** Tests when the client is ahead of the server and in the next ERA. b/199481251. */
+    @Test
+    public void testRequestTime_era1ClientEra0Server() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME);
+
+        mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false));
+        assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
+        assertEquals(1, mServer.numRequestsReceived());
+        assertEquals(1, mServer.numRepliesSent());
+
+        checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient);
+    }
+
+    /** Tests when the client and server are in ERA1. b/199481251. */
+    @Test
+    public void testRequestTime_era1ClientEra1Server() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME);
+
+        mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false));
+        assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
+        assertEquals(1, mServer.numRequestsReceived());
+        assertEquals(1, mServer.numRepliesSent());
+
+        checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient);
+    }
+
+    private static void checkRequestTimeCalcs(
+            Instant clientTime, Instant serverTime, SntpClient client) {
+        // The tests don't attempt to control the elapsed time tracking, which influences the
+        // round trip time (i.e. time spent in due to the network), but they control everything
+        // else, so assertions are allowed some slop and round trip time just has to be >= 0.
+        assertTrue("getRoundTripTime()=" + client.getRoundTripTime(),
+                client.getRoundTripTime() >= 0);
+
+        // Calculate the ideal offset if nothing took any time.
+        long expectedOffset = serverTime.toEpochMilli() - clientTime.toEpochMilli();
+        long allowedSlop = (client.getRoundTripTime() / 2) + 1; // +1 to allow for truncation loss.
+        assertNearlyEquals(expectedOffset, client.getClockOffset(), allowedSlop);
+        assertNearlyEquals(clientTime.toEpochMilli() + expectedOffset,
+                client.getNtpTime(), allowedSlop);
+    }
+
+    /**
+     * Unit tests for the low-level offset calculations. More targeted / easier to write than the
+     * end-to-end tests above that simulate the server. b/199481251.
+     */
+    @Test
+    public void testCalculateClockOffset() {
+        Instant era0Time1 = utcInstant(2021, 10, 5, 2, 2, 2, 2);
+        // Confirm what happens when the client and server are completely in sync.
+        checkCalculateClockOffset(era0Time1, era0Time1);
+
+        Instant era0Time2 = utcInstant(2021, 10, 6, 1, 1, 1, 1);
+        checkCalculateClockOffset(era0Time1, era0Time2);
+        checkCalculateClockOffset(era0Time2, era0Time1);
+
+        Instant era1Time1 = utcInstant(2061, 10, 5, 2, 2, 2, 2);
+        checkCalculateClockOffset(era1Time1, era1Time1);
+
+        Instant era1Time2 = utcInstant(2061, 10, 6, 1, 1, 1, 1);
+        checkCalculateClockOffset(era1Time1, era1Time2);
+        checkCalculateClockOffset(era1Time2, era1Time1);
+
+        // Cross-era calcs (requires they are still within 68 years of each other).
+        checkCalculateClockOffset(era0Time1, era1Time1);
+        checkCalculateClockOffset(era1Time1, era0Time1);
+    }
+
+    private void checkCalculateClockOffset(Instant clientTime, Instant serverTime) {
+        // The expected (ideal) offset is the difference between the client and server clocks. NTP
+        // assumes delays are symmetric, i.e. that the server time is between server
+        // receive/transmit time, client time is between request/response time, and send networking
+        // delay == receive networking delay.
+        Duration expectedOffset = Duration.between(clientTime, serverTime);
+
+        // Try simulating various round trip delays, including zero.
+        for (long totalElapsedTimeMillis : Arrays.asList(0, 20, 200, 2000, 20000)) {
+            // Simulate that a 10% of the elapsed time is due to time spent in the server, the rest
+            // is network / client processing time.
+            long simulatedServerElapsedTimeMillis = totalElapsedTimeMillis / 10;
+            long simulatedClientElapsedTimeMillis = totalElapsedTimeMillis;
+
+            // Create some symmetrical timestamps.
+            Timestamp64 clientRequestTimestamp = Timestamp64.fromInstant(
+                    clientTime.minusMillis(simulatedClientElapsedTimeMillis / 2));
+            Timestamp64 clientResponseTimestamp = Timestamp64.fromInstant(
+                    clientTime.plusMillis(simulatedClientElapsedTimeMillis / 2));
+            Timestamp64 serverReceiveTimestamp = Timestamp64.fromInstant(
+                    serverTime.minusMillis(simulatedServerElapsedTimeMillis / 2));
+            Timestamp64 serverTransmitTimestamp = Timestamp64.fromInstant(
+                    serverTime.plusMillis(simulatedServerElapsedTimeMillis / 2));
+
+            Duration actualOffset = SntpClient.calculateClockOffset(
+                    clientRequestTimestamp, serverReceiveTimestamp,
+                    serverTransmitTimestamp, clientResponseTimestamp);
+
+            // We allow up to 1ms variation because NTP types are lossy and the simulated elapsed
+            // time millis may not divide exactly.
+            int allowedSlopMillis = 1;
+            assertNearlyEquals(
+                    expectedOffset.toMillis(), actualOffset.toMillis(), allowedSlopMillis);
+        }
+    }
+
+    private static Instant utcInstant(
+            int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) {
+        return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos)
+                .toInstant(ZoneOffset.UTC);
     }
 
     @Test
@@ -98,6 +298,8 @@ public class SntpClientTest {
 
     @Test
     public void testTimeoutFailure() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
         mServer.clearServerReply();
         assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
         assertEquals(1, mServer.numRequestsReceived());
@@ -106,7 +308,9 @@ public class SntpClientTest {
 
     @Test
     public void testIgnoreLeapNoSync() throws Exception {
-        final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
         reply[0] |= (byte) 0xc0;
         mServer.setServerReply(reply);
         assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
@@ -116,7 +320,9 @@ public class SntpClientTest {
 
     @Test
     public void testAcceptOnlyServerAndBroadcastModes() throws Exception {
-        final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
         for (int i = 0; i <= 7; i++) {
             final String logMsg = "mode: " + i;
             reply[0] &= (byte) 0xf8;
@@ -140,10 +346,12 @@ public class SntpClientTest {
 
     @Test
     public void testAcceptableStrataOnly() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
         final int STRATUM_MIN = 1;
         final int STRATUM_MAX = 15;
 
-        final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
+        final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
         for (int i = 0; i < 256; i++) {
             final String logMsg = "stratum: " + i;
             reply[1] = (byte) i;
@@ -162,7 +370,9 @@ public class SntpClientTest {
 
     @Test
     public void testZeroTransmitTime() throws Exception {
-        final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false);
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
         Arrays.fill(reply, TRANSMIT_TIME_OFFSET, TRANSMIT_TIME_OFFSET + 8, (byte) 0x00);
         mServer.setServerReply(reply);
         assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
@@ -170,6 +380,19 @@ public class SntpClientTest {
         assertEquals(1, mServer.numRepliesSent());
     }
 
+    @Test
+    public void testNonMatchingOriginateTime() throws Exception {
+        when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME);
+
+        final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false);
+        mServer.setServerReply(reply);
+        mServer.setGenerateValidOriginateTimestamp(false);
+
+        assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork));
+        assertEquals(1, mServer.numRequestsReceived());
+        assertEquals(1, mServer.numRepliesSent());
+    }
+
 
     private static class SntpTestServer {
         private final Object mLock = new Object();
@@ -177,6 +400,7 @@ public class SntpClientTest {
         private final InetAddress mAddress;
         private final int mPort;
         private byte[] mReply;
+        private boolean mGenerateValidOriginateTimestamp = true;
         private int mRcvd;
         private int mSent;
         private Thread mListeningThread;
@@ -201,10 +425,16 @@ public class SntpClientTest {
                         synchronized (mLock) {
                             mRcvd++;
                             if (mReply == null) { continue; }
-                            // Copy transmit timestamp into originate timestamp.
-                            // TODO: bounds checking.
-                            System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET,
-                                             mReply, ORIGINATE_TIME_OFFSET, 8);
+                            if (mGenerateValidOriginateTimestamp) {
+                                // Copy the transmit timestamp into originate timestamp: This is
+                                // validated by well-behaved clients.
+                                System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET,
+                                        mReply, ORIGINATE_TIME_OFFSET, 8);
+                            } else {
+                                // Fill it with junk instead.
+                                Arrays.fill(mReply, ORIGINATE_TIME_OFFSET,
+                                        ORIGINATE_TIME_OFFSET + 8, (byte) 0xFF);
+                            }
                             ntpMsg.setData(mReply);
                             ntpMsg.setLength(mReply.length);
                             try {
@@ -245,9 +475,38 @@ public class SntpClientTest {
             }
         }
 
+        /**
+         * Controls the test server's behavior of copying the client's transmit timestamp into the
+         * response's originate timestamp (which is required of a real server).
+         */
+        public void setGenerateValidOriginateTimestamp(boolean enabled) {
+            synchronized (mLock) {
+                mGenerateValidOriginateTimestamp = enabled;
+            }
+        }
+
         public InetAddress getAddress() { return mAddress; }
         public int getPort() { return mPort; }
         public int numRequestsReceived() { synchronized (mLock) { return mRcvd; } }
         public int numRepliesSent() { synchronized (mLock) { return mSent; } }
     }
+
+    /**
+     * Generates the "real" server time assuming it is exactly between the receive and transmit
+     * timestamp and in the NTP era specified.
+     */
+    private static Instant calculateIdealServerTime(String receiveTimestampString,
+            String transmitTimestampString, int era) {
+        Timestamp64 receiveTimestamp = Timestamp64.fromString(receiveTimestampString);
+        Timestamp64 transmitTimestamp = Timestamp64.fromString(transmitTimestampString);
+        Duration serverProcessingTime =
+                Duration64.between(receiveTimestamp, transmitTimestamp).toDuration();
+        return receiveTimestamp.toInstant(era)
+                .plusMillis(serverProcessingTime.dividedBy(2).toMillis());
+    }
+
+    private static void assertNearlyEquals(long expected, long actual, long allowedSlop) {
+        assertTrue("expected=" + expected + ", actual=" + actual + ", allowedSlop=" + allowedSlop,
+                actual >= expected - allowedSlop && actual <= expected + allowedSlop);
+    }
 }
diff --git a/core/tests/coretests/src/android/net/sntp/Duration64Test.java b/core/tests/coretests/src/android/net/sntp/Duration64Test.java
new file mode 100644
index 0000000000000000000000000000000000000000..933800f5d65b81f579ecde38e6298982230347ef
--- /dev/null
+++ b/core/tests/coretests/src/android/net/sntp/Duration64Test.java
@@ -0,0 +1,264 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.net.sntp;
+
+import static android.net.sntp.Timestamp64.NANOS_PER_SECOND;
+
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.assertNotEquals;
+import static org.junit.Assert.assertTrue;
+
+import org.junit.Test;
+
+import java.time.Duration;
+import java.time.Instant;
+import java.time.LocalDateTime;
+import java.time.ZoneOffset;
+
+public class Duration64Test {
+
+    @Test
+    public void testBetween_rangeChecks() {
+        long maxDuration64Seconds = Timestamp64.MAX_SECONDS_IN_ERA / 2;
+
+        Timestamp64 zeroNoFrac = Timestamp64.fromComponents(0, 0);
+        assertEquals(Duration64.ZERO, Duration64.between(zeroNoFrac, zeroNoFrac));
+
+        {
+            Timestamp64 ceilNoFrac = Timestamp64.fromComponents(maxDuration64Seconds, 0);
+            assertEquals(Duration64.ZERO, Duration64.between(ceilNoFrac, ceilNoFrac));
+
+            long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND;
+            assertEquals(Duration.ofNanos(expectedNanos),
+                    Duration64.between(zeroNoFrac, ceilNoFrac).toDuration());
+            assertEquals(Duration.ofNanos(-expectedNanos),
+                    Duration64.between(ceilNoFrac, zeroNoFrac).toDuration());
+        }
+
+        {
+            // This value is the largest fraction of a second representable. It is 1-(1/2^32)), and
+            // so numerically larger than 999_999_999 nanos.
+            int fractionBits = 0xFFFF_FFFF;
+            Timestamp64 ceilWithFrac = Timestamp64
+                    .fromComponents(maxDuration64Seconds, fractionBits);
+            assertEquals(Duration64.ZERO, Duration64.between(ceilWithFrac, ceilWithFrac));
+
+            long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND + 999_999_999;
+            assertEquals(
+                    Duration.ofNanos(expectedNanos),
+                    Duration64.between(zeroNoFrac, ceilWithFrac).toDuration());
+            // The -1 nanos demonstrates asymmetry due to the way Duration64 has different
+            // precision / range of sub-second fractions.
+            assertEquals(
+                    Duration.ofNanos(-expectedNanos - 1),
+                    Duration64.between(ceilWithFrac, zeroNoFrac).toDuration());
+        }
+    }
+
+    @Test
+    public void testBetween_smallSecondsOnly() {
+        long expectedNanos = 5L * NANOS_PER_SECOND;
+        assertEquals(Duration.ofNanos(expectedNanos),
+                Duration64.between(Timestamp64.fromComponents(5, 0),
+                        Timestamp64.fromComponents(10, 0))
+                        .toDuration());
+        assertEquals(Duration.ofNanos(-expectedNanos),
+                Duration64.between(Timestamp64.fromComponents(10, 0),
+                        Timestamp64.fromComponents(5, 0))
+                        .toDuration());
+    }
+
+    @Test
+    public void testBetween_smallSecondsAndFraction() {
+        // Choose a nanos values we know can be represented exactly with fixed point binary (1/2
+        // second, 1/4 second, etc.).
+        {
+            long expectedNanos = 5L * NANOS_PER_SECOND + 500_000_000L;
+            int fractionHalfSecond = 0x8000_0000;
+            assertEquals(Duration.ofNanos(expectedNanos),
+                    Duration64.between(
+                            Timestamp64.fromComponents(5, 0),
+                            Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration());
+            assertEquals(Duration.ofNanos(-expectedNanos),
+                    Duration64.between(
+                            Timestamp64.fromComponents(10, fractionHalfSecond),
+                            Timestamp64.fromComponents(5, 0)).toDuration());
+        }
+
+        {
+            long expectedNanos = 5L * NANOS_PER_SECOND + 250_000_000L;
+            int fractionHalfSecond = 0x8000_0000;
+            int fractionQuarterSecond = 0x4000_0000;
+
+            assertEquals(Duration.ofNanos(expectedNanos),
+                    Duration64.between(
+                            Timestamp64.fromComponents(5, fractionQuarterSecond),
+                            Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration());
+            assertEquals(Duration.ofNanos(-expectedNanos),
+                    Duration64.between(
+                            Timestamp64.fromComponents(10, fractionHalfSecond),
+                            Timestamp64.fromComponents(5, fractionQuarterSecond)).toDuration());
+        }
+
+    }
+
+    @Test
+    public void testBetween_sameEra0() {
+        int arbitraryEra0Year = 2021;
+        Instant one = utcInstant(arbitraryEra0Year, 1, 1, 0, 0, 0, 500);
+        assertNtpEraOfInstant(one, 0);
+
+        checkDuration64Behavior(one, one);
+
+        Instant two = utcInstant(arbitraryEra0Year + 1, 1, 1, 0, 0, 0, 250);
+        assertNtpEraOfInstant(two, 0);
+
+        checkDuration64Behavior(one, two);
+        checkDuration64Behavior(two, one);
+    }
+
+    @Test
+    public void testBetween_sameEra1() {
+        int arbitraryEra1Year = 2037;
+        Instant one = utcInstant(arbitraryEra1Year, 1, 1, 0, 0, 0, 500);
+        assertNtpEraOfInstant(one, 1);
+
+        checkDuration64Behavior(one, one);
+
+        Instant two = utcInstant(arbitraryEra1Year + 1, 1, 1, 0, 0, 0, 250);
+        assertNtpEraOfInstant(two, 1);
+
+        checkDuration64Behavior(one, two);
+        checkDuration64Behavior(two, one);
+    }
+
+    /**
+     * Tests that two timestamps can originate from times in different eras, and the works
+     * calculation still works providing the two times aren't more than 68 years apart (half of the
+     * 136 years representable using an unsigned 32-bit seconds representation).
+     */
+    @Test
+    public void testBetween_adjacentEras() {
+        int yearsSeparation = 68;
+
+        // This year just needs to be < 68 years before the end of NTP timestamp era 0.
+        int arbitraryYearInEra0 = 2021;
+
+        Instant one = utcInstant(arbitraryYearInEra0, 1, 1, 0, 0, 0, 500);
+        assertNtpEraOfInstant(one, 0);
+
+        checkDuration64Behavior(one, one);
+
+        Instant two = utcInstant(arbitraryYearInEra0 + yearsSeparation, 1, 1, 0, 0, 0, 250);
+        assertNtpEraOfInstant(two, 1);
+
+        checkDuration64Behavior(one, two);
+        checkDuration64Behavior(two, one);
+    }
+
+    /**
+     * This test confirms that duration calculations fail in the expected fashion if two
+     * Timestamp64s are more than 2^31 seconds apart.
+     *
+     * <p>The types / math specified by NTP for timestamps deliberately takes place in 64-bit signed
+     * arithmetic for the bits used to represent timestamps (32-bit unsigned integer seconds,
+     * 32-bits fixed point for fraction of seconds). Timestamps can therefore represent ~136 years
+     * of seconds.
+     * When subtracting one timestamp from another, we end up with a signed 32-bit seconds value.
+     * This means the max duration representable is ~68 years before numbers will over or underflow.
+     * i.e. the client and server are in the same or adjacent NTP eras and the difference in their
+     * clocks isn't more than ~68 years. >= ~68 years and things break down.
+     */
+    @Test
+    public void testBetween_tooFarApart() {
+        int tooManyYearsSeparation = 68 + 1;
+
+        Instant one = utcInstant(2021, 1, 1, 0, 0, 0, 500);
+        assertNtpEraOfInstant(one, 0);
+        Instant two = utcInstant(2021 + tooManyYearsSeparation, 1, 1, 0, 0, 0, 250);
+        assertNtpEraOfInstant(two, 1);
+
+        checkDuration64OverflowBehavior(one, two);
+        checkDuration64OverflowBehavior(two, one);
+    }
+
+    private static void checkDuration64Behavior(Instant one, Instant two) {
+        // This is the answer if we perform the arithmetic in a lossless fashion.
+        Duration expectedDuration = Duration.between(one, two);
+        Duration64 expectedDuration64 = Duration64.fromDuration(expectedDuration);
+
+        // Sub-second precision is limited in Timestamp64, so we can lose 1ms.
+        assertEqualsOrSlightlyLessThan(
+                expectedDuration.toMillis(), expectedDuration64.toDuration().toMillis());
+
+        Timestamp64 one64 = Timestamp64.fromInstant(one);
+        Timestamp64 two64 = Timestamp64.fromInstant(two);
+
+        // This is the answer if we perform the arithmetic in a lossy fashion.
+        Duration64 actualDuration64 = Duration64.between(one64, two64);
+        assertEquals(expectedDuration64.getSeconds(), actualDuration64.getSeconds());
+        assertEqualsOrSlightlyLessThan(expectedDuration64.getNanos(), actualDuration64.getNanos());
+    }
+
+    private static void checkDuration64OverflowBehavior(Instant one, Instant two) {
+        // This is the answer if we perform the arithmetic in a lossless fashion.
+        Duration trueDuration = Duration.between(one, two);
+
+        // Confirm the maths is expected to overflow / underflow.
+        assertTrue(trueDuration.getSeconds() > Integer.MAX_VALUE / 2
+                || trueDuration.getSeconds() < Integer.MIN_VALUE / 2);
+
+        // Now perform the arithmetic as specified for NTP: do subtraction using the 64-bit
+        // timestamp.
+        Timestamp64 one64 = Timestamp64.fromInstant(one);
+        Timestamp64 two64 = Timestamp64.fromInstant(two);
+
+        Duration64 actualDuration64 = Duration64.between(one64, two64);
+        assertNotEquals(trueDuration.getSeconds(), actualDuration64.getSeconds());
+    }
+
+    /**
+     * Asserts the instant provided is in the specified NTP timestamp era. Used to confirm /
+     * document values picked for tests have the properties needed.
+     */
+    private static void assertNtpEraOfInstant(Instant one, int ntpEra) {
+        long expectedSeconds = one.getEpochSecond();
+
+        // The conversion to Timestamp64 is lossy (it loses the era). We then supply the expected
+        // era. If the era was correct, we will end up with the value we started with (modulo nano
+        // precision loss). If the era is wrong, we won't.
+        Instant roundtrippedInstant = Timestamp64.fromInstant(one).toInstant(ntpEra);
+
+        long actualSeconds = roundtrippedInstant.getEpochSecond();
+        assertEquals(expectedSeconds, actualSeconds);
+    }
+
+    /**
+     * Used to account for the fact that NTP types used 32-bit fixed point storage, so cannot store
+     * all values precisely. The value we get out will always be the value we put in, or one that is
+     * one unit smaller (due to truncation).
+     */
+    private static void assertEqualsOrSlightlyLessThan(long expected, long actual) {
+        assertTrue("expected=" + expected + ", actual=" + actual,
+                expected == actual || expected == actual - 1);
+    }
+
+    private static Instant utcInstant(
+            int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) {
+        return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos)
+                .toInstant(ZoneOffset.UTC);
+    }
+}
diff --git a/core/tests/coretests/src/android/net/sntp/PredictableRandom.java b/core/tests/coretests/src/android/net/sntp/PredictableRandom.java
new file mode 100644
index 0000000000000000000000000000000000000000..bb2922bf8ce2be7149d8521822dbf78ba075a5e9
--- /dev/null
+++ b/core/tests/coretests/src/android/net/sntp/PredictableRandom.java
@@ -0,0 +1,34 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.net.sntp;
+
+import java.util.Random;
+
+class PredictableRandom extends Random {
+    private int[] mIntSequence = new int[] { 1 };
+    private int mIntPos = 0;
+
+    public void setIntSequence(int[] intSequence) {
+        this.mIntSequence = intSequence;
+    }
+
+    @Override
+    public int nextInt() {
+        int value = mIntSequence[mIntPos++];
+        mIntPos %= mIntSequence.length;
+        return value;
+    }
+}
diff --git a/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java b/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java
new file mode 100644
index 0000000000000000000000000000000000000000..c923812fa2fb48855117a239a5395c47948fbf4b
--- /dev/null
+++ b/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java
@@ -0,0 +1,309 @@
+/*
+ * Copyright (C) 2021 The Android Open Source Project
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License");
+ * you may not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ *      http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package android.net.sntp;
+
+import static android.net.sntp.Timestamp64.NANOS_PER_SECOND;
+
+import static org.junit.Assert.assertEquals;
+import static org.junit.Assert.assertTrue;
+import static org.junit.Assert.fail;
+
+import org.junit.Test;
+
+import java.time.Instant;
+import java.util.HashSet;
+import java.util.Random;
+import java.util.Set;
+
+public class Timestamp64Test {
+
+    @Test
+    public void testFromComponents() {
+        long minNtpEraSeconds = 0;
+        long maxNtpEraSeconds = 0xFFFFFFFFL;
+
+        expectIllegalArgumentException(() -> Timestamp64.fromComponents(minNtpEraSeconds - 1, 0));
+        expectIllegalArgumentException(() -> Timestamp64.fromComponents(maxNtpEraSeconds + 1, 0));
+
+        assertComponentCreation(minNtpEraSeconds, 0);
+        assertComponentCreation(maxNtpEraSeconds, 0);
+        assertComponentCreation(maxNtpEraSeconds, Integer.MIN_VALUE);
+        assertComponentCreation(maxNtpEraSeconds, Integer.MAX_VALUE);
+    }
+
+    private static void assertComponentCreation(long ntpEraSeconds, int fractionBits) {
+        Timestamp64 value = Timestamp64.fromComponents(ntpEraSeconds, fractionBits);
+        assertEquals(ntpEraSeconds, value.getEraSeconds());
+        assertEquals(fractionBits, value.getFractionBits());
+    }
+
+    @Test
+    public void testEqualsAndHashcode() {
+        assertEqualsAndHashcode(0, 0);
+        assertEqualsAndHashcode(1, 0);
+        assertEqualsAndHashcode(0, 1);
+    }
+
+    private static void assertEqualsAndHashcode(int eraSeconds, int fractionBits) {
+        Timestamp64 one = Timestamp64.fromComponents(eraSeconds, fractionBits);
+        Timestamp64 two = Timestamp64.fromComponents(eraSeconds, fractionBits);
+        assertEquals(one, two);
+        assertEquals(one.hashCode(), two.hashCode());
+    }
+
+    @Test
+    public void testStringForm() {
+        expectIllegalArgumentException(() -> Timestamp64.fromString(""));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("."));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("1234567812345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678?12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678..12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("1.12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12.12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("123456.12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("1234567.12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.12"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.123456"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1234567"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("X2345678.12345678"));
+        expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.X2345678"));
+
+        assertStringCreation("00000000.00000000", 0, 0);
+        assertStringCreation("00000001.00000001", 1, 1);
+        assertStringCreation("ffffffff.ffffffff", 0xFFFFFFFFL, 0xFFFFFFFF);
+    }
+
+    private static void assertStringCreation(
+            String string, long expectedSeconds, int expectedFractionBits) {
+        Timestamp64 timestamp64 = Timestamp64.fromString(string);
+        assertEquals(string, timestamp64.toString());
+        assertEquals(expectedSeconds, timestamp64.getEraSeconds());
+        assertEquals(expectedFractionBits, timestamp64.getFractionBits());
+    }
+
+    @Test
+    public void testStringForm_lenientHexCasing() {
+        Timestamp64 mixedCaseValue = Timestamp64.fromString("AaBbCcDd.EeFf1234");
+        assertEquals(0xAABBCCDDL, mixedCaseValue.getEraSeconds());
+        assertEquals(0xEEFF1234, mixedCaseValue.getFractionBits());
+    }
+
+    @Test
+    public void testFromInstant_secondsHandling() {
+        final int era0 = 0;
+        final int eraNeg1 = -1;
+        final int eraNeg2 = -2;
+        final int era1 = 1;
+
+        assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970, 0, era0);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA, 0, eraNeg1);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA, 0, era1);
+
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 - 1, Timestamp64.MAX_SECONDS_IN_ERA, -1);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA - 1,
+                Timestamp64.MAX_SECONDS_IN_ERA, eraNeg2);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA - 1,
+                Timestamp64.MAX_SECONDS_IN_ERA, era0);
+
+        assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970 + 1, 1, era0);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA + 1, 1, eraNeg1);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA + 1, 1, era1);
+
+        assertInstantCreationOnlySeconds(0, Timestamp64.OFFSET_1900_TO_1970, era0);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, eraNeg1);
+        assertInstantCreationOnlySeconds(
+                Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, era1);
+
+        assertInstantCreationOnlySeconds(1, Timestamp64.OFFSET_1900_TO_1970 + 1, era0);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, eraNeg1);
+        assertInstantCreationOnlySeconds(
+                Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, era1);
+
+        assertInstantCreationOnlySeconds(-1, Timestamp64.OFFSET_1900_TO_1970 - 1, era0);
+        assertInstantCreationOnlySeconds(
+                -Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, eraNeg1);
+        assertInstantCreationOnlySeconds(
+                Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, era1);
+    }
+
+    private static void assertInstantCreationOnlySeconds(
+            long epochSeconds, long expectedNtpEraSeconds, int ntpEra) {
+        int nanosOfSecond = 0;
+        Instant instant = Instant.ofEpochSecond(epochSeconds, nanosOfSecond);
+        Timestamp64 timestamp = Timestamp64.fromInstant(instant);
+        assertEquals(expectedNtpEraSeconds, timestamp.getEraSeconds());
+
+        int expectedFractionBits = 0;
+        assertEquals(expectedFractionBits, timestamp.getFractionBits());
+
+        // Confirm the Instant can be round-tripped if we know the era. Also assumes the nanos can
+        // be stored precisely; 0 can be.
+        Instant roundTrip = timestamp.toInstant(ntpEra);
+        assertEquals(instant, roundTrip);
+    }
+
+    @Test
+    public void testFromInstant_fractionHandling() {
+        // Try some values we know can be represented exactly.
+        assertInstantCreationOnlyFractionExact(0x0, 0);
+        assertInstantCreationOnlyFractionExact(0x80000000, 500_000_000L);
+        assertInstantCreationOnlyFractionExact(0x40000000, 250_000_000L);
+
+        // Test the limits of precision.
+        assertInstantCreationOnlyFractionExact(0x00000006, 1L);
+        assertInstantCreationOnlyFractionExact(0x00000005, 1L);
+        assertInstantCreationOnlyFractionExact(0x00000004, 0L);
+        assertInstantCreationOnlyFractionExact(0x00000002, 0L);
+        assertInstantCreationOnlyFractionExact(0x00000001, 0L);
+
+        // Confirm nanosecond storage / precision is within 1ns.
+        final boolean exhaustive = false;
+        for (int i = 0; i < NANOS_PER_SECOND; i++) {
+            Instant instant = Instant.ofEpochSecond(0, i);
+            Instant roundTripped = Timestamp64.fromInstant(instant).toInstant(0);
+            assertNanosWithTruncationAllowed(i, roundTripped);
+            if (!exhaustive) {
+                i += 999_999;
+            }
+        }
+    }
+
+    private static void assertInstantCreationOnlyFractionExact(
+            int fractionBits, long expectedNanos) {
+        Timestamp64 timestamp64 = Timestamp64.fromComponents(0, fractionBits);
+
+        final int ntpEra = 0;
+        Instant instant = timestamp64.toInstant(ntpEra);
+
+        assertEquals(expectedNanos, instant.getNano());
+    }
+
+    private static void assertNanosWithTruncationAllowed(long expectedNanos, Instant instant) {
+        // Allow for < 1ns difference due to truncation.
+        long actualNanos = instant.getNano();
+        assertTrue("expectedNanos=" + expectedNanos + ",  actualNanos=" + actualNanos,
+                actualNanos == expectedNanos || actualNanos == expectedNanos - 1);
+    }
+
+    @Test
+    public void testMillisRandomizationConstant() {
+        // Mathematically, we can say that to represent 1000 different values, we need 10 binary
+        // digits (2^10 = 1024). The same is true whether we're dealing with integers or fractions.
+        // Unfortunately, for fractions those 1024 values do not correspond to discrete decimal
+        // values. Discrete millisecond values as fractions (e.g. 0.001 - 0.999) cannot be
+        // represented exactly except where the value can also be represented as some combination of
+        // powers of -2. When we convert back and forth, we truncate, so millisecond decimal
+        // fraction N represented as a binary fraction will always be equal to or lower than N. If
+        // we are truncating correctly it will never be as low as (N-0.001). N -> [N-0.001, N].
+
+        // We need to keep 10 bits to hold millis (inaccurately, since there are numbers that
+        // cannot be represented exactly), leaving us able to randomize the remaining 22 bits of the
+        // fraction part without significantly affecting the number represented.
+        assertEquals(22, Timestamp64.SUB_MILLIS_BITS_TO_RANDOMIZE);
+
+        // Brute force proof that randomization logic will keep the timestamp within the range
+        // [N-0.001, N] where x is in milliseconds.
+        int smallFractionRandomizedLow = 0;
+        int smallFractionRandomizedHigh = 0b00000000_00111111_11111111_11111111;
+        int largeFractionRandomizedLow = 0b11111111_11000000_00000000_00000000;
+        int largeFractionRandomizedHigh = 0b11111111_11111111_11111111_11111111;
+
+        long smallLowNanos = Timestamp64.fromComponents(
+                0, smallFractionRandomizedLow).toInstant(0).getNano();
+        long smallHighNanos = Timestamp64.fromComponents(
+                0, smallFractionRandomizedHigh).toInstant(0).getNano();
+        long smallDelta = smallHighNanos - smallLowNanos;
+        long millisInNanos = 1_000_000_000 / 1_000;
+        assertTrue(smallDelta >= 0 && smallDelta < millisInNanos);
+
+        long largeLowNanos = Timestamp64.fromComponents(
+                0, largeFractionRandomizedLow).toInstant(0).getNano();
+        long largeHighNanos = Timestamp64.fromComponents(
+                0, largeFractionRandomizedHigh).toInstant(0).getNano();
+        long largeDelta = largeHighNanos - largeLowNanos;
+        assertTrue(largeDelta >= 0 && largeDelta < millisInNanos);
+
+        PredictableRandom random = new PredictableRandom();
+        random.setIntSequence(new int[] { 0xFFFF_FFFF });
+        Timestamp64 zero = Timestamp64.fromComponents(0, 0);
+        Timestamp64 zeroWithFractionRandomized = zero.randomizeSubMillis(random);
+        assertEquals(zero.getEraSeconds(), zeroWithFractionRandomized.getEraSeconds());
+        assertEquals(smallFractionRandomizedHigh, zeroWithFractionRandomized.getFractionBits());
+    }
+
+    @Test
+    public void testRandomizeLowestBits() {
+        Random random = new Random(1);
+        {
+            int fractionBits = 0;
+            expectIllegalArgumentException(
+                    () -> Timestamp64.randomizeLowestBits(random, fractionBits, -1));
+            expectIllegalArgumentException(
+                    () -> Timestamp64.randomizeLowestBits(random, fractionBits, 0));
+            expectIllegalArgumentException(
+                    () -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE));
+            expectIllegalArgumentException(
+                    () -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE + 1));
+        }
+
+        // Check the behavior looks correct from a probabilistic point of view.
+        for (int input : new int[] { 0, 0xFFFFFFFF }) {
+            for (int bitCount = 1; bitCount < Integer.SIZE; bitCount++) {
+                int upperBitMask = 0xFFFFFFFF << bitCount;
+                int expectedUpperBits = input & upperBitMask;
+
+                Set<Integer> values = new HashSet<>();
+                values.add(input);
+
+                int trials = 100;
+                for (int i = 0; i < trials; i++) {
+                    int outputFractionBits =
+                            Timestamp64.randomizeLowestBits(random, input, bitCount);
+
+                    // Record the output value for later analysis.
+                    values.add(outputFractionBits);
+
+                    // Check upper bits did not change.
+                    assertEquals(expectedUpperBits, outputFractionBits & upperBitMask);
+                }
+
+                // It's possible to be more rigorous here, perhaps with a histogram. As bitCount
+                // rises, values.size() quickly trend towards the value of trials + 1. For now, this
+                // mostly just guards against a no-op implementation.
+                assertTrue(bitCount + ":" + values.size(), values.size() > 1);
+            }
+        }
+    }
+
+    private static void expectIllegalArgumentException(Runnable r) {
+        try {
+            r.run();
+            fail();
+        } catch (IllegalArgumentException e) {
+            // Expected
+        }
+    }
+}