diff --git a/core/java/android/net/SntpClient.java b/core/java/android/net/SntpClient.java index f6852e6814393efe4312ced89bc89a3969d6ca46..0eb4cf3ecadf97c724ba21a7ae4bf5908c606ae9 100644 --- a/core/java/android/net/SntpClient.java +++ b/core/java/android/net/SntpClient.java @@ -17,16 +17,26 @@ package android.net; import android.compat.annotation.UnsupportedAppUsage; +import android.net.sntp.Duration64; +import android.net.sntp.Timestamp64; import android.os.SystemClock; import android.util.Log; +import android.util.Slog; +import com.android.internal.annotations.VisibleForTesting; import com.android.internal.util.TrafficStatsConstants; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import java.net.UnknownHostException; -import java.util.Arrays; +import java.security.NoSuchAlgorithmException; +import java.security.SecureRandom; +import java.time.Duration; +import java.time.Instant; +import java.util.Objects; +import java.util.Random; +import java.util.function.Supplier; /** * {@hide} @@ -60,17 +70,21 @@ public class SntpClient { private static final int NTP_STRATUM_DEATH = 0; private static final int NTP_STRATUM_MAX = 15; - // Number of seconds between Jan 1, 1900 and Jan 1, 1970 - // 70 years plus 17 leap days - private static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L; + // The source of the current system clock time, replaceable for testing. + private final Supplier<Instant> mSystemTimeSupplier; - // system time computed from NTP server response + private final Random mRandom; + + // The last offset calculated from an NTP server response + private long mClockOffset; + + // The last system time computed from an NTP server response private long mNtpTime; - // value of SystemClock.elapsedRealtime() corresponding to mNtpTime + // The value of SystemClock.elapsedRealtime() corresponding to mNtpTime / mClockOffset private long mNtpTimeReference; - // round trip time in milliseconds + // The round trip (network) time in milliseconds private long mRoundTripTime; private static class InvalidServerReplyException extends Exception { @@ -81,6 +95,13 @@ public class SntpClient { @UnsupportedAppUsage public SntpClient() { + this(Instant::now, defaultRandom()); + } + + @VisibleForTesting + public SntpClient(Supplier<Instant> systemTimeSupplier, Random random) { + mSystemTimeSupplier = Objects.requireNonNull(systemTimeSupplier); + mRandom = Objects.requireNonNull(random); } /** @@ -126,9 +147,13 @@ public class SntpClient { buffer[0] = NTP_MODE_CLIENT | (NTP_VERSION << 3); // get current time and write it to the request packet - final long requestTime = System.currentTimeMillis(); + final Instant requestTime = mSystemTimeSupplier.get(); + final Timestamp64 requestTimestamp = Timestamp64.fromInstant(requestTime); + + final Timestamp64 randomizedRequestTimestamp = + requestTimestamp.randomizeSubMillis(mRandom); final long requestTicks = SystemClock.elapsedRealtime(); - writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, requestTime); + writeTimeStamp(buffer, TRANSMIT_TIME_OFFSET, randomizedRequestTimestamp); socket.send(request); @@ -136,42 +161,44 @@ public class SntpClient { DatagramPacket response = new DatagramPacket(buffer, buffer.length); socket.receive(response); final long responseTicks = SystemClock.elapsedRealtime(); - final long responseTime = requestTime + (responseTicks - requestTicks); + final Instant responseTime = requestTime.plusMillis(responseTicks - requestTicks); + final Timestamp64 responseTimestamp = Timestamp64.fromInstant(responseTime); // extract the results final byte leap = (byte) ((buffer[0] >> 6) & 0x3); final byte mode = (byte) (buffer[0] & 0x7); final int stratum = (int) (buffer[1] & 0xff); - final long originateTime = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET); - final long receiveTime = readTimeStamp(buffer, RECEIVE_TIME_OFFSET); - final long transmitTime = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET); - final long referenceTime = readTimeStamp(buffer, REFERENCE_TIME_OFFSET); + final Timestamp64 referenceTimestamp = readTimeStamp(buffer, REFERENCE_TIME_OFFSET); + final Timestamp64 originateTimestamp = readTimeStamp(buffer, ORIGINATE_TIME_OFFSET); + final Timestamp64 receiveTimestamp = readTimeStamp(buffer, RECEIVE_TIME_OFFSET); + final Timestamp64 transmitTimestamp = readTimeStamp(buffer, TRANSMIT_TIME_OFFSET); /* Do validation according to RFC */ - // TODO: validate originateTime == requestTime. - checkValidServerReply(leap, mode, stratum, transmitTime, referenceTime); - - long roundTripTime = responseTicks - requestTicks - (transmitTime - receiveTime); - // receiveTime = originateTime + transit + skew - // responseTime = transmitTime + transit - skew - // clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2 - // = ((originateTime + transit + skew - originateTime) + - // (transmitTime - (transmitTime + transit - skew)))/2 - // = ((transit + skew) + (transmitTime - transmitTime - transit + skew))/2 - // = (transit + skew - transit + skew)/2 - // = (2 * skew)/2 = skew - long clockOffset = ((receiveTime - originateTime) + (transmitTime - responseTime))/2; - EventLogTags.writeNtpSuccess(address.toString(), roundTripTime, clockOffset); + checkValidServerReply(leap, mode, stratum, transmitTimestamp, referenceTimestamp, + randomizedRequestTimestamp, originateTimestamp); + + long totalTransactionDurationMillis = responseTicks - requestTicks; + long serverDurationMillis = + Duration64.between(receiveTimestamp, transmitTimestamp).toDuration().toMillis(); + long roundTripTimeMillis = totalTransactionDurationMillis - serverDurationMillis; + + Duration clockOffsetDuration = calculateClockOffset(requestTimestamp, + receiveTimestamp, transmitTimestamp, responseTimestamp); + long clockOffsetMillis = clockOffsetDuration.toMillis(); + + EventLogTags.writeNtpSuccess( + address.toString(), roundTripTimeMillis, clockOffsetMillis); if (DBG) { - Log.d(TAG, "round trip: " + roundTripTime + "ms, " + - "clock offset: " + clockOffset + "ms"); + Log.d(TAG, "round trip: " + roundTripTimeMillis + "ms, " + + "clock offset: " + clockOffsetMillis + "ms"); } // save our results - use the times on this side of the network latency // (response rather than request time) - mNtpTime = responseTime + clockOffset; + mClockOffset = clockOffsetMillis; + mNtpTime = responseTime.plus(clockOffsetDuration).toEpochMilli(); mNtpTimeReference = responseTicks; - mRoundTripTime = roundTripTime; + mRoundTripTime = roundTripTimeMillis; } catch (Exception e) { EventLogTags.writeNtpFailure(address.toString(), e.toString()); if (DBG) Log.d(TAG, "request time failed: " + e); @@ -186,6 +213,28 @@ public class SntpClient { return true; } + /** Performs the NTP clock offset calculation. */ + @VisibleForTesting + public static Duration calculateClockOffset(Timestamp64 clientRequestTimestamp, + Timestamp64 serverReceiveTimestamp, Timestamp64 serverTransmitTimestamp, + Timestamp64 clientResponseTimestamp) { + // According to RFC4330: + // t is the system clock offset (the adjustment we are trying to find) + // t = ((T2 - T1) + (T3 - T4)) / 2 + // + // Which is: + // t = (([server]receiveTimestamp - [client]requestTimestamp) + // + ([server]transmitTimestamp - [client]responseTimestamp)) / 2 + // + // See the NTP spec and tests: the numeric types used are deliberate: + // + Duration64.between() uses 64-bit arithmetic (32-bit for the seconds). + // + plus() / dividedBy() use Duration, which isn't the double precision floating point + // used in NTPv4, but is good enough. + return Duration64.between(clientRequestTimestamp, serverReceiveTimestamp) + .plus(Duration64.between(clientResponseTimestamp, serverTransmitTimestamp)) + .dividedBy(2); + } + @Deprecated @UnsupportedAppUsage public boolean requestTime(String host, int timeout) { @@ -193,6 +242,14 @@ public class SntpClient { return false; } + /** + * Returns the offset calculated to apply to the client clock to arrive at {@link #getNtpTime()} + */ + @VisibleForTesting + public long getClockOffset() { + return mClockOffset; + } + /** * Returns the time computed from the NTP transaction. * @@ -225,8 +282,9 @@ public class SntpClient { } private static void checkValidServerReply( - byte leap, byte mode, int stratum, long transmitTime, long referenceTime) - throws InvalidServerReplyException { + byte leap, byte mode, int stratum, Timestamp64 transmitTimestamp, + Timestamp64 referenceTimestamp, Timestamp64 randomizedRequestTimestamp, + Timestamp64 originateTimestamp) throws InvalidServerReplyException { if (leap == NTP_LEAP_NOSYNC) { throw new InvalidServerReplyException("unsynchronized server"); } @@ -236,73 +294,68 @@ public class SntpClient { if ((stratum == NTP_STRATUM_DEATH) || (stratum > NTP_STRATUM_MAX)) { throw new InvalidServerReplyException("untrusted stratum: " + stratum); } - if (transmitTime == 0) { - throw new InvalidServerReplyException("zero transmitTime"); + if (!randomizedRequestTimestamp.equals(originateTimestamp)) { + throw new InvalidServerReplyException( + "originateTimestamp != randomizedRequestTimestamp"); + } + if (transmitTimestamp.equals(Timestamp64.ZERO)) { + throw new InvalidServerReplyException("zero transmitTimestamp"); } - if (referenceTime == 0) { - throw new InvalidServerReplyException("zero reference timestamp"); + if (referenceTimestamp.equals(Timestamp64.ZERO)) { + throw new InvalidServerReplyException("zero referenceTimestamp"); } } /** * Reads an unsigned 32 bit big endian number from the given offset in the buffer. */ - private long read32(byte[] buffer, int offset) { - byte b0 = buffer[offset]; - byte b1 = buffer[offset+1]; - byte b2 = buffer[offset+2]; - byte b3 = buffer[offset+3]; - - // convert signed bytes to unsigned values - int i0 = ((b0 & 0x80) == 0x80 ? (b0 & 0x7F) + 0x80 : b0); - int i1 = ((b1 & 0x80) == 0x80 ? (b1 & 0x7F) + 0x80 : b1); - int i2 = ((b2 & 0x80) == 0x80 ? (b2 & 0x7F) + 0x80 : b2); - int i3 = ((b3 & 0x80) == 0x80 ? (b3 & 0x7F) + 0x80 : b3); - - return ((long)i0 << 24) + ((long)i1 << 16) + ((long)i2 << 8) + (long)i3; + private long readUnsigned32(byte[] buffer, int offset) { + int i0 = buffer[offset++] & 0xFF; + int i1 = buffer[offset++] & 0xFF; + int i2 = buffer[offset++] & 0xFF; + int i3 = buffer[offset] & 0xFF; + + int bits = (i0 << 24) | (i1 << 16) | (i2 << 8) | i3; + return bits & 0xFFFF_FFFFL; } /** - * Reads the NTP time stamp at the given offset in the buffer and returns - * it as a system time (milliseconds since January 1, 1970). + * Reads the NTP time stamp from the given offset in the buffer. */ - private long readTimeStamp(byte[] buffer, int offset) { - long seconds = read32(buffer, offset); - long fraction = read32(buffer, offset + 4); - // Special case: zero means zero. - if (seconds == 0 && fraction == 0) { - return 0; - } - return ((seconds - OFFSET_1900_TO_1970) * 1000) + ((fraction * 1000L) / 0x100000000L); + private Timestamp64 readTimeStamp(byte[] buffer, int offset) { + long seconds = readUnsigned32(buffer, offset); + int fractionBits = (int) readUnsigned32(buffer, offset + 4); + return Timestamp64.fromComponents(seconds, fractionBits); } /** - * Writes system time (milliseconds since January 1, 1970) as an NTP time stamp - * at the given offset in the buffer. + * Writes the NTP time stamp at the given offset in the buffer. */ - private void writeTimeStamp(byte[] buffer, int offset, long time) { - // Special case: zero means zero. - if (time == 0) { - Arrays.fill(buffer, offset, offset + 8, (byte) 0x00); - return; - } - - long seconds = time / 1000L; - long milliseconds = time - seconds * 1000L; - seconds += OFFSET_1900_TO_1970; - + private void writeTimeStamp(byte[] buffer, int offset, Timestamp64 timestamp) { + long seconds = timestamp.getEraSeconds(); // write seconds in big endian format - buffer[offset++] = (byte)(seconds >> 24); - buffer[offset++] = (byte)(seconds >> 16); - buffer[offset++] = (byte)(seconds >> 8); - buffer[offset++] = (byte)(seconds >> 0); + buffer[offset++] = (byte) (seconds >>> 24); + buffer[offset++] = (byte) (seconds >>> 16); + buffer[offset++] = (byte) (seconds >>> 8); + buffer[offset++] = (byte) (seconds); - long fraction = milliseconds * 0x100000000L / 1000L; + int fractionBits = timestamp.getFractionBits(); // write fraction in big endian format - buffer[offset++] = (byte)(fraction >> 24); - buffer[offset++] = (byte)(fraction >> 16); - buffer[offset++] = (byte)(fraction >> 8); - // low order bits should be random data - buffer[offset++] = (byte)(Math.random() * 255.0); + buffer[offset++] = (byte) (fractionBits >>> 24); + buffer[offset++] = (byte) (fractionBits >>> 16); + buffer[offset++] = (byte) (fractionBits >>> 8); + buffer[offset] = (byte) (fractionBits); + } + + private static Random defaultRandom() { + Random random; + try { + random = SecureRandom.getInstanceStrong(); + } catch (NoSuchAlgorithmException e) { + // This should never happen. + Slog.wtf(TAG, "Unable to access SecureRandom", e); + random = new Random(System.currentTimeMillis()); + } + return random; } } diff --git a/core/java/android/net/sntp/Duration64.java b/core/java/android/net/sntp/Duration64.java new file mode 100644 index 0000000000000000000000000000000000000000..939b2892a18fa43aec4b8ea7aa8eb7cc5473425c --- /dev/null +++ b/core/java/android/net/sntp/Duration64.java @@ -0,0 +1,141 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package android.net.sntp; + +import java.time.Duration; + +/** + * A type similar to {@link Timestamp64} but used when calculating the difference between two + * timestamps. As such, it is a signed type, but still uses 64-bits in total and so can only + * represent half the magnitude of {@link Timestamp64}. + * + * <p>See <a href="https://www.eecis.udel.edu/~mills/time.html">4. Time Difference Calculations</a>. + * + * @hide + */ +public class Duration64 { + + public static final Duration64 ZERO = new Duration64(0); + private final long mBits; + + private Duration64(long bits) { + this.mBits = bits; + } + + /** + * Returns the difference between two 64-bit NTP timestamps as a {@link Duration64}, as + * described in the NTP spec. The times represented by the timestamps have to be within {@link + * Timestamp64#MAX_SECONDS_IN_ERA} (~68 years) of each other for the calculation to produce a + * correct answer. + */ + public static Duration64 between(Timestamp64 startInclusive, Timestamp64 endExclusive) { + long oneBits = (startInclusive.getEraSeconds() << 32) + | (startInclusive.getFractionBits() & 0xFFFF_FFFFL); + long twoBits = (endExclusive.getEraSeconds() << 32) + | (endExclusive.getFractionBits() & 0xFFFF_FFFFL); + long resultBits = twoBits - oneBits; + return new Duration64(resultBits); + } + + /** + * Add two {@link Duration64} instances together. This performs the calculation in {@link + * Duration} and returns a {@link Duration} to increase the magnitude of accepted arguments, + * since {@link Duration64} only supports signed 32-bit seconds. The use of {@link Duration} + * limits precision to nanoseconds. + */ + public Duration plus(Duration64 other) { + // From https://www.eecis.udel.edu/~mills/time.html: + // "The offset and delay calculations require sums and differences of these raw timestamp + // differences that can span no more than from 34 years in the future to 34 years in the + // past without overflow. This is a fundamental limitation in 64-bit integer calculations. + // + // In the NTPv4 reference implementation, all calculations involving offset and delay values + // use 64-bit floating double arithmetic, with the exception of raw timestamp subtraction, + // as mentioned above. The raw timestamp differences are then converted to 64-bit floating + // double format without loss of precision or chance of overflow in subsequent + // calculations." + // + // Here, we use Duration instead, which provides sufficient range, but loses precision below + // nanos. + return this.toDuration().plus(other.toDuration()); + } + + /** + * Returns a {@link Duration64} equivalent of the supplied duration, if the magnitude can be + * represented. Because {@link Duration64} uses a fixed point type for sub-second values it + * cannot represent all nanosecond values precisely and so the conversion can be lossy. + * + * @throws IllegalArgumentException if the supplied duration is too big to be represented + */ + public static Duration64 fromDuration(Duration duration) { + long seconds = duration.getSeconds(); + if (seconds < Integer.MIN_VALUE || seconds > Integer.MAX_VALUE) { + throw new IllegalArgumentException(); + } + long bits = (seconds << 32) + | (Timestamp64.nanosToFractionBits(duration.getNano()) & 0xFFFF_FFFFL); + return new Duration64(bits); + } + + /** + * Returns a {@link Duration} equivalent of this duration. Because {@link Duration64} uses a + * fixed point type for sub-second values it can values smaller than nanosecond precision and so + * the conversion can be lossy. + */ + public Duration toDuration() { + int seconds = getSeconds(); + int nanos = getNanos(); + return Duration.ofSeconds(seconds, nanos); + } + + @Override + public boolean equals(Object o) { + if (this == o) { + return true; + } + if (o == null || getClass() != o.getClass()) { + return false; + } + Duration64 that = (Duration64) o; + return mBits == that.mBits; + } + + @Override + public int hashCode() { + return java.util.Objects.hash(mBits); + } + + @Override + public String toString() { + Duration duration = toDuration(); + return Long.toHexString(mBits) + + "(" + duration.getSeconds() + "s " + duration.getNano() + "ns)"; + } + + /** + * Returns the <em>signed</em> seconds in this duration. + */ + public int getSeconds() { + return (int) (mBits >> 32); + } + + /** + * Returns the <em>unsigned</em> nanoseconds in this duration (truncated). + */ + public int getNanos() { + return Timestamp64.fractionBitsToNanos((int) (mBits & 0xFFFF_FFFFL)); + } +} diff --git a/core/java/android/net/sntp/Timestamp64.java b/core/java/android/net/sntp/Timestamp64.java new file mode 100644 index 0000000000000000000000000000000000000000..81a33108ed85054f278f9135dceb6e1162fbd074 --- /dev/null +++ b/core/java/android/net/sntp/Timestamp64.java @@ -0,0 +1,186 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package android.net.sntp; + +import com.android.internal.annotations.VisibleForTesting; + +import java.time.Instant; +import java.util.Objects; +import java.util.Random; + +/** + * The 64-bit type ("timestamp") that NTP uses to represent a point in time. It only holds the + * lowest 32-bits of the number of seconds since 1900-01-01 00:00:00. Consequently, to turn an + * instance into an unambiguous point in time the era number must be known. Era zero runs from + * 1900-01-01 00:00:00 to a date in 2036. + * + * It stores sub-second values using a 32-bit fixed point type, so it can resolve values smaller + * than a nanosecond, but is imprecise (i.e. it truncates). + * + * See also <a href=https://www.eecis.udel.edu/~mills/y2k.html>NTP docs</a>. + * + * @hide + */ +public final class Timestamp64 { + + public static final Timestamp64 ZERO = fromComponents(0, 0); + static final int SUB_MILLIS_BITS_TO_RANDOMIZE = 32 - 10; + + // Number of seconds between Jan 1, 1900 and Jan 1, 1970 + // 70 years plus 17 leap days + static final long OFFSET_1900_TO_1970 = ((365L * 70L) + 17L) * 24L * 60L * 60L; + static final long MAX_SECONDS_IN_ERA = 0xFFFF_FFFFL; + static final long SECONDS_IN_ERA = MAX_SECONDS_IN_ERA + 1; + + static final int NANOS_PER_SECOND = 1_000_000_000; + + /** Creates a {@link Timestamp64} from the seconds and fraction components. */ + public static Timestamp64 fromComponents(long eraSeconds, int fractionBits) { + return new Timestamp64(eraSeconds, fractionBits); + } + + /** Creates a {@link Timestamp64} by decoding a string in the form "e4dc720c.4d4fc9eb". */ + public static Timestamp64 fromString(String string) { + final int requiredLength = 17; + if (string.length() != requiredLength || string.charAt(8) != '.') { + throw new IllegalArgumentException(string); + } + String eraSecondsString = string.substring(0, 8); + String fractionString = string.substring(9); + long eraSeconds = Long.parseLong(eraSecondsString, 16); + + // Use parseLong() because the type is unsigned. Integer.parseInt() will reject 0x70000000 + // or above as being out of range. + long fractionBitsAsLong = Long.parseLong(fractionString, 16); + if (fractionBitsAsLong < 0 || fractionBitsAsLong > 0xFFFFFFFFL) { + throw new IllegalArgumentException("Invalid fractionBits:" + fractionString); + } + return new Timestamp64(eraSeconds, (int) fractionBitsAsLong); + } + + /** + * Converts an {@link Instant} into a {@link Timestamp64}. This is lossy: Timestamp64 only + * contains the number of seconds in a given era, but the era is not stored. Also, sub-second + * values are not stored precisely. + */ + public static Timestamp64 fromInstant(Instant instant) { + long ntpEraSeconds = instant.getEpochSecond() + OFFSET_1900_TO_1970; + if (ntpEraSeconds < 0) { + ntpEraSeconds = SECONDS_IN_ERA - (-ntpEraSeconds % SECONDS_IN_ERA); + } + ntpEraSeconds %= SECONDS_IN_ERA; + + long nanos = instant.getNano(); + int fractionBits = nanosToFractionBits(nanos); + + return new Timestamp64(ntpEraSeconds, fractionBits); + } + + private final long mEraSeconds; + private final int mFractionBits; + + private Timestamp64(long eraSeconds, int fractionBits) { + if (eraSeconds < 0 || eraSeconds > MAX_SECONDS_IN_ERA) { + throw new IllegalArgumentException( + "Invalid parameters. seconds=" + eraSeconds + ", fraction=" + fractionBits); + } + this.mEraSeconds = eraSeconds; + this.mFractionBits = fractionBits; + } + + /** Returns the number of seconds in the NTP era. */ + public long getEraSeconds() { + return mEraSeconds; + } + + /** Returns the fraction of a second as 32-bit, unsigned fixed-point bits. */ + public int getFractionBits() { + return mFractionBits; + } + + @Override + public String toString() { + return String.format("%08x.%08x", mEraSeconds, mFractionBits); + } + + /** Returns the instant represented by this value in the specified NTP era. */ + public Instant toInstant(int ntpEra) { + long secondsSinceEpoch = mEraSeconds - OFFSET_1900_TO_1970; + secondsSinceEpoch += ntpEra * SECONDS_IN_ERA; + + int nanos = fractionBitsToNanos(mFractionBits); + return Instant.ofEpochSecond(secondsSinceEpoch, nanos); + } + + @Override + public boolean equals(Object o) { + if (this == o) { + return true; + } + if (o == null || getClass() != o.getClass()) { + return false; + } + Timestamp64 that = (Timestamp64) o; + return mEraSeconds == that.mEraSeconds && mFractionBits == that.mFractionBits; + } + + @Override + public int hashCode() { + return Objects.hash(mEraSeconds, mFractionBits); + } + + static int fractionBitsToNanos(int fractionBits) { + long fractionBitsLong = fractionBits & 0xFFFF_FFFFL; + return (int) ((fractionBitsLong * NANOS_PER_SECOND) >>> 32); + } + + static int nanosToFractionBits(long nanos) { + if (nanos > NANOS_PER_SECOND) { + throw new IllegalArgumentException(); + } + return (int) ((nanos << 32) / NANOS_PER_SECOND); + } + + /** + * Randomizes the fraction bits that represent sub-millisecond values. i.e. the randomization + * won't change the number of milliseconds represented after truncation. This is used to + * implement the part of the NTP spec that calls for clients with millisecond accuracy clocks + * to send randomized LSB values rather than zeros. + */ + public Timestamp64 randomizeSubMillis(Random random) { + int randomizedFractionBits = + randomizeLowestBits(random, this.mFractionBits, SUB_MILLIS_BITS_TO_RANDOMIZE); + return new Timestamp64(mEraSeconds, randomizedFractionBits); + } + + /** + * Randomizes the specified number of LSBs in {@code value} by using replacement bits from + * {@code Random.getNextInt()}. + */ + @VisibleForTesting + public static int randomizeLowestBits(Random random, int value, int bitsToRandomize) { + if (bitsToRandomize < 1 || bitsToRandomize >= Integer.SIZE) { + // There's no point in randomizing all bits or none of the bits. + throw new IllegalArgumentException(Integer.toString(bitsToRandomize)); + } + + int upperBitMask = 0xFFFF_FFFF << bitsToRandomize; + int lowerBitMask = ~upperBitMask; + + int randomValue = random.nextInt(); + return (value & upperBitMask) | (randomValue & lowerBitMask); + } +} diff --git a/core/tests/coretests/src/android/net/SntpClientTest.java b/core/tests/coretests/src/android/net/SntpClientTest.java index bf9978c2c4472b67c014432ecf2716db533433ec..b400b9bf41dd137066e97363ba621d9838c0c672 100644 --- a/core/tests/coretests/src/android/net/SntpClientTest.java +++ b/core/tests/coretests/src/android/net/SntpClientTest.java @@ -22,7 +22,10 @@ import static junit.framework.Assert.assertTrue; import static org.mockito.Mockito.CALLS_REAL_METHODS; import static org.mockito.Mockito.mock; +import static org.mockito.Mockito.when; +import android.net.sntp.Duration64; +import android.net.sntp.Timestamp64; import android.util.Log; import androidx.test.runner.AndroidJUnit4; @@ -38,7 +41,13 @@ import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.InetAddress; import java.net.SocketException; +import java.time.Duration; +import java.time.Instant; +import java.time.LocalDateTime; +import java.time.ZoneOffset; import java.util.Arrays; +import java.util.Random; +import java.util.function.Supplier; @RunWith(AndroidJUnit4.class) public class SntpClientTest { @@ -54,41 +63,232 @@ public class SntpClientTest { // // Server, Leap indicator: (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20 // Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41 - // Reference Timestamp: 3653932102.507969856 (2015/10/15 14:08:22) - // Originator Timestamp: 3653932113.576327741 (2015/10/15 14:08:33) - // Receive Timestamp: 3653932113.581012725 (2015/10/15 14:08:33) - // Transmit Timestamp: 3653932113.581012725 (2015/10/15 14:08:33) + // Reference Timestamp: + // d9ca9446.820a5000 / ERA0: 2015-10-15 21:08:22 UTC / ERA1: 2151-11-22 03:36:38 UTC + // Originator Timestamp: + // d9ca9451.938a3771 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC + // Receive Timestamp: + // d9ca9451.94bd3fff / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC + // Transmit Timestamp: + // d9ca9451.94bd4001 / ERA0: 2015-10-15 21:08:33 UTC / ERA1: 2151-11-22 03:36:49 UTC + // // Originator - Receive Timestamp: +0.004684958 // Originator - Transmit Timestamp: +0.004684958 - private static final String WORKING_VERSION4 = - "240206ec" + - "00000165" + - "000000b2" + - "ddfd4729" + - "d9ca9446820a5000" + - "d9ca9451938a3771" + - "d9ca945194bd3fff" + - "d9ca945194bd4001"; + private static final String LATE_ERA_RESPONSE = + "240206ec" + + "00000165" + + "000000b2" + + "ddfd4729" + + "d9ca9446820a5000" + + "d9ca9451938a3771" + + "d9ca945194bd3fff" + + "d9ca945194bd4001"; + + /** This is the actual UTC time in the server if it is in ERA0 */ + private static final Instant LATE_ERA0_SERVER_TIME = + calculateIdealServerTime("d9ca9451.94bd3fff", "d9ca9451.94bd4001", 0); + + /** + * This is the Unix epoch time matches the originate timestamp from {@link #LATE_ERA_RESPONSE} + * when interpreted as an ERA0 timestamp. + */ + private static final Instant LATE_ERA0_REQUEST_TIME = + Timestamp64.fromString("d9ca9451.938a3771").toInstant(0); + + // A tweaked version of the ERA0 response to represent an ERA 1 response. + // + // Server, Leap indicator: (0), Stratum 2 (secondary reference), poll 6 (64s), precision -20 + // Root Delay: 0.005447, Root dispersion: 0.002716, Reference-ID: 221.253.71.41 + // Reference Timestamp: + // 1db2d246.820a5000 / ERA0: 1915-10-16 21:08:22 UTC / ERA1: 2051-11-22 03:36:38 UTC + // Originate Timestamp: + // 1db2d251.938a3771 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC + // Receive Timestamp: + // 1db2d251.94bd3fff / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC + // Transmit Timestamp: + // 1db2d251.94bd4001 / ERA0: 1915-10-16 21:08:33 UTC / ERA1: 2051-11-22 03:36:49 UTC + // + // Originate - Receive Timestamp: +0.004684958 + // Originate - Transmit Timestamp: +0.004684958 + private static final String EARLY_ERA_RESPONSE = + "240206ec" + + "00000165" + + "000000b2" + + "ddfd4729" + + "1db2d246820a5000" + + "1db2d251938a3771" + + "1db2d25194bd3fff" + + "1db2d25194bd4001"; + + /** This is the actual UTC time in the server if it is in ERA0 */ + private static final Instant EARLY_ERA1_SERVER_TIME = + calculateIdealServerTime("1db2d251.94bd3fff", "1db2d251.94bd4001", 1); + + /** + * This is the Unix epoch time matches the originate timestamp from {@link #EARLY_ERA_RESPONSE} + * when interpreted as an ERA1 timestamp. + */ + private static final Instant EARLY_ERA1_REQUEST_TIME = + Timestamp64.fromString("1db2d251.938a3771").toInstant(1); private SntpTestServer mServer; private SntpClient mClient; private Network mNetwork; + private Supplier<Instant> mSystemTimeSupplier; + private Random mRandom; + @SuppressWarnings("unchecked") @Before public void setUp() throws Exception { + mServer = new SntpTestServer(); + // A mock network has NETID_UNSET, which allows the test to run, with a loopback server, // even w/o external networking. mNetwork = mock(Network.class, CALLS_REAL_METHODS); - mServer = new SntpTestServer(); - mClient = new SntpClient(); + mRandom = mock(Random.class); + + mSystemTimeSupplier = mock(Supplier.class); + // Returning zero means the "randomized" bottom bits of the clients transmit timestamp / + // server's originate timestamp will be zeros. + when(mRandom.nextInt()).thenReturn(0); + mClient = new SntpClient(mSystemTimeSupplier, mRandom); + } + + /** Tests when the client and server are in ERA0. b/199481251. */ + @Test + public void testRequestTime_era0ClientEra0RServer() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false)); + assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); + assertEquals(1, mServer.numRequestsReceived()); + assertEquals(1, mServer.numRepliesSent()); + + checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient); } + /** Tests when the client is behind the server and in the previous ERA. b/199481251. */ @Test - public void testBasicWorkingSntpClientQuery() throws Exception { - mServer.setServerReply(HexEncoding.decode(WORKING_VERSION4.toCharArray(), false)); + public void testRequestTime_era0ClientEra1Server() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false)); assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); assertEquals(1, mServer.numRequestsReceived()); assertEquals(1, mServer.numRepliesSent()); + + checkRequestTimeCalcs(LATE_ERA0_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient); + + } + + /** Tests when the client is ahead of the server and in the next ERA. b/199481251. */ + @Test + public void testRequestTime_era1ClientEra0Server() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME); + + mServer.setServerReply(HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false)); + assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); + assertEquals(1, mServer.numRequestsReceived()); + assertEquals(1, mServer.numRepliesSent()); + + checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, LATE_ERA0_SERVER_TIME, mClient); + } + + /** Tests when the client and server are in ERA1. b/199481251. */ + @Test + public void testRequestTime_era1ClientEra1Server() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(EARLY_ERA1_REQUEST_TIME); + + mServer.setServerReply(HexEncoding.decode(EARLY_ERA_RESPONSE.toCharArray(), false)); + assertTrue(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); + assertEquals(1, mServer.numRequestsReceived()); + assertEquals(1, mServer.numRepliesSent()); + + checkRequestTimeCalcs(EARLY_ERA1_REQUEST_TIME, EARLY_ERA1_SERVER_TIME, mClient); + } + + private static void checkRequestTimeCalcs( + Instant clientTime, Instant serverTime, SntpClient client) { + // The tests don't attempt to control the elapsed time tracking, which influences the + // round trip time (i.e. time spent in due to the network), but they control everything + // else, so assertions are allowed some slop and round trip time just has to be >= 0. + assertTrue("getRoundTripTime()=" + client.getRoundTripTime(), + client.getRoundTripTime() >= 0); + + // Calculate the ideal offset if nothing took any time. + long expectedOffset = serverTime.toEpochMilli() - clientTime.toEpochMilli(); + long allowedSlop = (client.getRoundTripTime() / 2) + 1; // +1 to allow for truncation loss. + assertNearlyEquals(expectedOffset, client.getClockOffset(), allowedSlop); + assertNearlyEquals(clientTime.toEpochMilli() + expectedOffset, + client.getNtpTime(), allowedSlop); + } + + /** + * Unit tests for the low-level offset calculations. More targeted / easier to write than the + * end-to-end tests above that simulate the server. b/199481251. + */ + @Test + public void testCalculateClockOffset() { + Instant era0Time1 = utcInstant(2021, 10, 5, 2, 2, 2, 2); + // Confirm what happens when the client and server are completely in sync. + checkCalculateClockOffset(era0Time1, era0Time1); + + Instant era0Time2 = utcInstant(2021, 10, 6, 1, 1, 1, 1); + checkCalculateClockOffset(era0Time1, era0Time2); + checkCalculateClockOffset(era0Time2, era0Time1); + + Instant era1Time1 = utcInstant(2061, 10, 5, 2, 2, 2, 2); + checkCalculateClockOffset(era1Time1, era1Time1); + + Instant era1Time2 = utcInstant(2061, 10, 6, 1, 1, 1, 1); + checkCalculateClockOffset(era1Time1, era1Time2); + checkCalculateClockOffset(era1Time2, era1Time1); + + // Cross-era calcs (requires they are still within 68 years of each other). + checkCalculateClockOffset(era0Time1, era1Time1); + checkCalculateClockOffset(era1Time1, era0Time1); + } + + private void checkCalculateClockOffset(Instant clientTime, Instant serverTime) { + // The expected (ideal) offset is the difference between the client and server clocks. NTP + // assumes delays are symmetric, i.e. that the server time is between server + // receive/transmit time, client time is between request/response time, and send networking + // delay == receive networking delay. + Duration expectedOffset = Duration.between(clientTime, serverTime); + + // Try simulating various round trip delays, including zero. + for (long totalElapsedTimeMillis : Arrays.asList(0, 20, 200, 2000, 20000)) { + // Simulate that a 10% of the elapsed time is due to time spent in the server, the rest + // is network / client processing time. + long simulatedServerElapsedTimeMillis = totalElapsedTimeMillis / 10; + long simulatedClientElapsedTimeMillis = totalElapsedTimeMillis; + + // Create some symmetrical timestamps. + Timestamp64 clientRequestTimestamp = Timestamp64.fromInstant( + clientTime.minusMillis(simulatedClientElapsedTimeMillis / 2)); + Timestamp64 clientResponseTimestamp = Timestamp64.fromInstant( + clientTime.plusMillis(simulatedClientElapsedTimeMillis / 2)); + Timestamp64 serverReceiveTimestamp = Timestamp64.fromInstant( + serverTime.minusMillis(simulatedServerElapsedTimeMillis / 2)); + Timestamp64 serverTransmitTimestamp = Timestamp64.fromInstant( + serverTime.plusMillis(simulatedServerElapsedTimeMillis / 2)); + + Duration actualOffset = SntpClient.calculateClockOffset( + clientRequestTimestamp, serverReceiveTimestamp, + serverTransmitTimestamp, clientResponseTimestamp); + + // We allow up to 1ms variation because NTP types are lossy and the simulated elapsed + // time millis may not divide exactly. + int allowedSlopMillis = 1; + assertNearlyEquals( + expectedOffset.toMillis(), actualOffset.toMillis(), allowedSlopMillis); + } + } + + private static Instant utcInstant( + int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) { + return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos) + .toInstant(ZoneOffset.UTC); } @Test @@ -98,6 +298,8 @@ public class SntpClientTest { @Test public void testTimeoutFailure() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + mServer.clearServerReply(); assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); assertEquals(1, mServer.numRequestsReceived()); @@ -106,7 +308,9 @@ public class SntpClientTest { @Test public void testIgnoreLeapNoSync() throws Exception { - final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false); + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false); reply[0] |= (byte) 0xc0; mServer.setServerReply(reply); assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); @@ -116,7 +320,9 @@ public class SntpClientTest { @Test public void testAcceptOnlyServerAndBroadcastModes() throws Exception { - final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false); + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false); for (int i = 0; i <= 7; i++) { final String logMsg = "mode: " + i; reply[0] &= (byte) 0xf8; @@ -140,10 +346,12 @@ public class SntpClientTest { @Test public void testAcceptableStrataOnly() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + final int STRATUM_MIN = 1; final int STRATUM_MAX = 15; - final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false); + final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false); for (int i = 0; i < 256; i++) { final String logMsg = "stratum: " + i; reply[1] = (byte) i; @@ -162,7 +370,9 @@ public class SntpClientTest { @Test public void testZeroTransmitTime() throws Exception { - final byte[] reply = HexEncoding.decode(WORKING_VERSION4.toCharArray(), false); + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false); Arrays.fill(reply, TRANSMIT_TIME_OFFSET, TRANSMIT_TIME_OFFSET + 8, (byte) 0x00); mServer.setServerReply(reply); assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); @@ -170,6 +380,19 @@ public class SntpClientTest { assertEquals(1, mServer.numRepliesSent()); } + @Test + public void testNonMatchingOriginateTime() throws Exception { + when(mSystemTimeSupplier.get()).thenReturn(LATE_ERA0_REQUEST_TIME); + + final byte[] reply = HexEncoding.decode(LATE_ERA_RESPONSE.toCharArray(), false); + mServer.setServerReply(reply); + mServer.setGenerateValidOriginateTimestamp(false); + + assertFalse(mClient.requestTime(mServer.getAddress(), mServer.getPort(), 500, mNetwork)); + assertEquals(1, mServer.numRequestsReceived()); + assertEquals(1, mServer.numRepliesSent()); + } + private static class SntpTestServer { private final Object mLock = new Object(); @@ -177,6 +400,7 @@ public class SntpClientTest { private final InetAddress mAddress; private final int mPort; private byte[] mReply; + private boolean mGenerateValidOriginateTimestamp = true; private int mRcvd; private int mSent; private Thread mListeningThread; @@ -201,10 +425,16 @@ public class SntpClientTest { synchronized (mLock) { mRcvd++; if (mReply == null) { continue; } - // Copy transmit timestamp into originate timestamp. - // TODO: bounds checking. - System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET, - mReply, ORIGINATE_TIME_OFFSET, 8); + if (mGenerateValidOriginateTimestamp) { + // Copy the transmit timestamp into originate timestamp: This is + // validated by well-behaved clients. + System.arraycopy(ntpMsg.getData(), TRANSMIT_TIME_OFFSET, + mReply, ORIGINATE_TIME_OFFSET, 8); + } else { + // Fill it with junk instead. + Arrays.fill(mReply, ORIGINATE_TIME_OFFSET, + ORIGINATE_TIME_OFFSET + 8, (byte) 0xFF); + } ntpMsg.setData(mReply); ntpMsg.setLength(mReply.length); try { @@ -245,9 +475,38 @@ public class SntpClientTest { } } + /** + * Controls the test server's behavior of copying the client's transmit timestamp into the + * response's originate timestamp (which is required of a real server). + */ + public void setGenerateValidOriginateTimestamp(boolean enabled) { + synchronized (mLock) { + mGenerateValidOriginateTimestamp = enabled; + } + } + public InetAddress getAddress() { return mAddress; } public int getPort() { return mPort; } public int numRequestsReceived() { synchronized (mLock) { return mRcvd; } } public int numRepliesSent() { synchronized (mLock) { return mSent; } } } + + /** + * Generates the "real" server time assuming it is exactly between the receive and transmit + * timestamp and in the NTP era specified. + */ + private static Instant calculateIdealServerTime(String receiveTimestampString, + String transmitTimestampString, int era) { + Timestamp64 receiveTimestamp = Timestamp64.fromString(receiveTimestampString); + Timestamp64 transmitTimestamp = Timestamp64.fromString(transmitTimestampString); + Duration serverProcessingTime = + Duration64.between(receiveTimestamp, transmitTimestamp).toDuration(); + return receiveTimestamp.toInstant(era) + .plusMillis(serverProcessingTime.dividedBy(2).toMillis()); + } + + private static void assertNearlyEquals(long expected, long actual, long allowedSlop) { + assertTrue("expected=" + expected + ", actual=" + actual + ", allowedSlop=" + allowedSlop, + actual >= expected - allowedSlop && actual <= expected + allowedSlop); + } } diff --git a/core/tests/coretests/src/android/net/sntp/Duration64Test.java b/core/tests/coretests/src/android/net/sntp/Duration64Test.java new file mode 100644 index 0000000000000000000000000000000000000000..933800f5d65b81f579ecde38e6298982230347ef --- /dev/null +++ b/core/tests/coretests/src/android/net/sntp/Duration64Test.java @@ -0,0 +1,264 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package android.net.sntp; + +import static android.net.sntp.Timestamp64.NANOS_PER_SECOND; + +import static org.junit.Assert.assertEquals; +import static org.junit.Assert.assertNotEquals; +import static org.junit.Assert.assertTrue; + +import org.junit.Test; + +import java.time.Duration; +import java.time.Instant; +import java.time.LocalDateTime; +import java.time.ZoneOffset; + +public class Duration64Test { + + @Test + public void testBetween_rangeChecks() { + long maxDuration64Seconds = Timestamp64.MAX_SECONDS_IN_ERA / 2; + + Timestamp64 zeroNoFrac = Timestamp64.fromComponents(0, 0); + assertEquals(Duration64.ZERO, Duration64.between(zeroNoFrac, zeroNoFrac)); + + { + Timestamp64 ceilNoFrac = Timestamp64.fromComponents(maxDuration64Seconds, 0); + assertEquals(Duration64.ZERO, Duration64.between(ceilNoFrac, ceilNoFrac)); + + long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND; + assertEquals(Duration.ofNanos(expectedNanos), + Duration64.between(zeroNoFrac, ceilNoFrac).toDuration()); + assertEquals(Duration.ofNanos(-expectedNanos), + Duration64.between(ceilNoFrac, zeroNoFrac).toDuration()); + } + + { + // This value is the largest fraction of a second representable. It is 1-(1/2^32)), and + // so numerically larger than 999_999_999 nanos. + int fractionBits = 0xFFFF_FFFF; + Timestamp64 ceilWithFrac = Timestamp64 + .fromComponents(maxDuration64Seconds, fractionBits); + assertEquals(Duration64.ZERO, Duration64.between(ceilWithFrac, ceilWithFrac)); + + long expectedNanos = maxDuration64Seconds * NANOS_PER_SECOND + 999_999_999; + assertEquals( + Duration.ofNanos(expectedNanos), + Duration64.between(zeroNoFrac, ceilWithFrac).toDuration()); + // The -1 nanos demonstrates asymmetry due to the way Duration64 has different + // precision / range of sub-second fractions. + assertEquals( + Duration.ofNanos(-expectedNanos - 1), + Duration64.between(ceilWithFrac, zeroNoFrac).toDuration()); + } + } + + @Test + public void testBetween_smallSecondsOnly() { + long expectedNanos = 5L * NANOS_PER_SECOND; + assertEquals(Duration.ofNanos(expectedNanos), + Duration64.between(Timestamp64.fromComponents(5, 0), + Timestamp64.fromComponents(10, 0)) + .toDuration()); + assertEquals(Duration.ofNanos(-expectedNanos), + Duration64.between(Timestamp64.fromComponents(10, 0), + Timestamp64.fromComponents(5, 0)) + .toDuration()); + } + + @Test + public void testBetween_smallSecondsAndFraction() { + // Choose a nanos values we know can be represented exactly with fixed point binary (1/2 + // second, 1/4 second, etc.). + { + long expectedNanos = 5L * NANOS_PER_SECOND + 500_000_000L; + int fractionHalfSecond = 0x8000_0000; + assertEquals(Duration.ofNanos(expectedNanos), + Duration64.between( + Timestamp64.fromComponents(5, 0), + Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration()); + assertEquals(Duration.ofNanos(-expectedNanos), + Duration64.between( + Timestamp64.fromComponents(10, fractionHalfSecond), + Timestamp64.fromComponents(5, 0)).toDuration()); + } + + { + long expectedNanos = 5L * NANOS_PER_SECOND + 250_000_000L; + int fractionHalfSecond = 0x8000_0000; + int fractionQuarterSecond = 0x4000_0000; + + assertEquals(Duration.ofNanos(expectedNanos), + Duration64.between( + Timestamp64.fromComponents(5, fractionQuarterSecond), + Timestamp64.fromComponents(10, fractionHalfSecond)).toDuration()); + assertEquals(Duration.ofNanos(-expectedNanos), + Duration64.between( + Timestamp64.fromComponents(10, fractionHalfSecond), + Timestamp64.fromComponents(5, fractionQuarterSecond)).toDuration()); + } + + } + + @Test + public void testBetween_sameEra0() { + int arbitraryEra0Year = 2021; + Instant one = utcInstant(arbitraryEra0Year, 1, 1, 0, 0, 0, 500); + assertNtpEraOfInstant(one, 0); + + checkDuration64Behavior(one, one); + + Instant two = utcInstant(arbitraryEra0Year + 1, 1, 1, 0, 0, 0, 250); + assertNtpEraOfInstant(two, 0); + + checkDuration64Behavior(one, two); + checkDuration64Behavior(two, one); + } + + @Test + public void testBetween_sameEra1() { + int arbitraryEra1Year = 2037; + Instant one = utcInstant(arbitraryEra1Year, 1, 1, 0, 0, 0, 500); + assertNtpEraOfInstant(one, 1); + + checkDuration64Behavior(one, one); + + Instant two = utcInstant(arbitraryEra1Year + 1, 1, 1, 0, 0, 0, 250); + assertNtpEraOfInstant(two, 1); + + checkDuration64Behavior(one, two); + checkDuration64Behavior(two, one); + } + + /** + * Tests that two timestamps can originate from times in different eras, and the works + * calculation still works providing the two times aren't more than 68 years apart (half of the + * 136 years representable using an unsigned 32-bit seconds representation). + */ + @Test + public void testBetween_adjacentEras() { + int yearsSeparation = 68; + + // This year just needs to be < 68 years before the end of NTP timestamp era 0. + int arbitraryYearInEra0 = 2021; + + Instant one = utcInstant(arbitraryYearInEra0, 1, 1, 0, 0, 0, 500); + assertNtpEraOfInstant(one, 0); + + checkDuration64Behavior(one, one); + + Instant two = utcInstant(arbitraryYearInEra0 + yearsSeparation, 1, 1, 0, 0, 0, 250); + assertNtpEraOfInstant(two, 1); + + checkDuration64Behavior(one, two); + checkDuration64Behavior(two, one); + } + + /** + * This test confirms that duration calculations fail in the expected fashion if two + * Timestamp64s are more than 2^31 seconds apart. + * + * <p>The types / math specified by NTP for timestamps deliberately takes place in 64-bit signed + * arithmetic for the bits used to represent timestamps (32-bit unsigned integer seconds, + * 32-bits fixed point for fraction of seconds). Timestamps can therefore represent ~136 years + * of seconds. + * When subtracting one timestamp from another, we end up with a signed 32-bit seconds value. + * This means the max duration representable is ~68 years before numbers will over or underflow. + * i.e. the client and server are in the same or adjacent NTP eras and the difference in their + * clocks isn't more than ~68 years. >= ~68 years and things break down. + */ + @Test + public void testBetween_tooFarApart() { + int tooManyYearsSeparation = 68 + 1; + + Instant one = utcInstant(2021, 1, 1, 0, 0, 0, 500); + assertNtpEraOfInstant(one, 0); + Instant two = utcInstant(2021 + tooManyYearsSeparation, 1, 1, 0, 0, 0, 250); + assertNtpEraOfInstant(two, 1); + + checkDuration64OverflowBehavior(one, two); + checkDuration64OverflowBehavior(two, one); + } + + private static void checkDuration64Behavior(Instant one, Instant two) { + // This is the answer if we perform the arithmetic in a lossless fashion. + Duration expectedDuration = Duration.between(one, two); + Duration64 expectedDuration64 = Duration64.fromDuration(expectedDuration); + + // Sub-second precision is limited in Timestamp64, so we can lose 1ms. + assertEqualsOrSlightlyLessThan( + expectedDuration.toMillis(), expectedDuration64.toDuration().toMillis()); + + Timestamp64 one64 = Timestamp64.fromInstant(one); + Timestamp64 two64 = Timestamp64.fromInstant(two); + + // This is the answer if we perform the arithmetic in a lossy fashion. + Duration64 actualDuration64 = Duration64.between(one64, two64); + assertEquals(expectedDuration64.getSeconds(), actualDuration64.getSeconds()); + assertEqualsOrSlightlyLessThan(expectedDuration64.getNanos(), actualDuration64.getNanos()); + } + + private static void checkDuration64OverflowBehavior(Instant one, Instant two) { + // This is the answer if we perform the arithmetic in a lossless fashion. + Duration trueDuration = Duration.between(one, two); + + // Confirm the maths is expected to overflow / underflow. + assertTrue(trueDuration.getSeconds() > Integer.MAX_VALUE / 2 + || trueDuration.getSeconds() < Integer.MIN_VALUE / 2); + + // Now perform the arithmetic as specified for NTP: do subtraction using the 64-bit + // timestamp. + Timestamp64 one64 = Timestamp64.fromInstant(one); + Timestamp64 two64 = Timestamp64.fromInstant(two); + + Duration64 actualDuration64 = Duration64.between(one64, two64); + assertNotEquals(trueDuration.getSeconds(), actualDuration64.getSeconds()); + } + + /** + * Asserts the instant provided is in the specified NTP timestamp era. Used to confirm / + * document values picked for tests have the properties needed. + */ + private static void assertNtpEraOfInstant(Instant one, int ntpEra) { + long expectedSeconds = one.getEpochSecond(); + + // The conversion to Timestamp64 is lossy (it loses the era). We then supply the expected + // era. If the era was correct, we will end up with the value we started with (modulo nano + // precision loss). If the era is wrong, we won't. + Instant roundtrippedInstant = Timestamp64.fromInstant(one).toInstant(ntpEra); + + long actualSeconds = roundtrippedInstant.getEpochSecond(); + assertEquals(expectedSeconds, actualSeconds); + } + + /** + * Used to account for the fact that NTP types used 32-bit fixed point storage, so cannot store + * all values precisely. The value we get out will always be the value we put in, or one that is + * one unit smaller (due to truncation). + */ + private static void assertEqualsOrSlightlyLessThan(long expected, long actual) { + assertTrue("expected=" + expected + ", actual=" + actual, + expected == actual || expected == actual - 1); + } + + private static Instant utcInstant( + int year, int monthOfYear, int day, int hour, int minute, int second, int nanos) { + return LocalDateTime.of(year, monthOfYear, day, hour, minute, second, nanos) + .toInstant(ZoneOffset.UTC); + } +} diff --git a/core/tests/coretests/src/android/net/sntp/PredictableRandom.java b/core/tests/coretests/src/android/net/sntp/PredictableRandom.java new file mode 100644 index 0000000000000000000000000000000000000000..bb2922bf8ce2be7149d8521822dbf78ba075a5e9 --- /dev/null +++ b/core/tests/coretests/src/android/net/sntp/PredictableRandom.java @@ -0,0 +1,34 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package android.net.sntp; + +import java.util.Random; + +class PredictableRandom extends Random { + private int[] mIntSequence = new int[] { 1 }; + private int mIntPos = 0; + + public void setIntSequence(int[] intSequence) { + this.mIntSequence = intSequence; + } + + @Override + public int nextInt() { + int value = mIntSequence[mIntPos++]; + mIntPos %= mIntSequence.length; + return value; + } +} diff --git a/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java b/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java new file mode 100644 index 0000000000000000000000000000000000000000..c923812fa2fb48855117a239a5395c47948fbf4b --- /dev/null +++ b/core/tests/coretests/src/android/net/sntp/Timestamp64Test.java @@ -0,0 +1,309 @@ +/* + * Copyright (C) 2021 The Android Open Source Project + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ +package android.net.sntp; + +import static android.net.sntp.Timestamp64.NANOS_PER_SECOND; + +import static org.junit.Assert.assertEquals; +import static org.junit.Assert.assertTrue; +import static org.junit.Assert.fail; + +import org.junit.Test; + +import java.time.Instant; +import java.util.HashSet; +import java.util.Random; +import java.util.Set; + +public class Timestamp64Test { + + @Test + public void testFromComponents() { + long minNtpEraSeconds = 0; + long maxNtpEraSeconds = 0xFFFFFFFFL; + + expectIllegalArgumentException(() -> Timestamp64.fromComponents(minNtpEraSeconds - 1, 0)); + expectIllegalArgumentException(() -> Timestamp64.fromComponents(maxNtpEraSeconds + 1, 0)); + + assertComponentCreation(minNtpEraSeconds, 0); + assertComponentCreation(maxNtpEraSeconds, 0); + assertComponentCreation(maxNtpEraSeconds, Integer.MIN_VALUE); + assertComponentCreation(maxNtpEraSeconds, Integer.MAX_VALUE); + } + + private static void assertComponentCreation(long ntpEraSeconds, int fractionBits) { + Timestamp64 value = Timestamp64.fromComponents(ntpEraSeconds, fractionBits); + assertEquals(ntpEraSeconds, value.getEraSeconds()); + assertEquals(fractionBits, value.getFractionBits()); + } + + @Test + public void testEqualsAndHashcode() { + assertEqualsAndHashcode(0, 0); + assertEqualsAndHashcode(1, 0); + assertEqualsAndHashcode(0, 1); + } + + private static void assertEqualsAndHashcode(int eraSeconds, int fractionBits) { + Timestamp64 one = Timestamp64.fromComponents(eraSeconds, fractionBits); + Timestamp64 two = Timestamp64.fromComponents(eraSeconds, fractionBits); + assertEquals(one, two); + assertEquals(one.hashCode(), two.hashCode()); + } + + @Test + public void testStringForm() { + expectIllegalArgumentException(() -> Timestamp64.fromString("")); + expectIllegalArgumentException(() -> Timestamp64.fromString(".")); + expectIllegalArgumentException(() -> Timestamp64.fromString("1234567812345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678?12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678..12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("1.12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12.12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("123456.12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("1234567.12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.12")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.123456")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.1234567")); + expectIllegalArgumentException(() -> Timestamp64.fromString("X2345678.12345678")); + expectIllegalArgumentException(() -> Timestamp64.fromString("12345678.X2345678")); + + assertStringCreation("00000000.00000000", 0, 0); + assertStringCreation("00000001.00000001", 1, 1); + assertStringCreation("ffffffff.ffffffff", 0xFFFFFFFFL, 0xFFFFFFFF); + } + + private static void assertStringCreation( + String string, long expectedSeconds, int expectedFractionBits) { + Timestamp64 timestamp64 = Timestamp64.fromString(string); + assertEquals(string, timestamp64.toString()); + assertEquals(expectedSeconds, timestamp64.getEraSeconds()); + assertEquals(expectedFractionBits, timestamp64.getFractionBits()); + } + + @Test + public void testStringForm_lenientHexCasing() { + Timestamp64 mixedCaseValue = Timestamp64.fromString("AaBbCcDd.EeFf1234"); + assertEquals(0xAABBCCDDL, mixedCaseValue.getEraSeconds()); + assertEquals(0xEEFF1234, mixedCaseValue.getFractionBits()); + } + + @Test + public void testFromInstant_secondsHandling() { + final int era0 = 0; + final int eraNeg1 = -1; + final int eraNeg2 = -2; + final int era1 = 1; + + assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970, 0, era0); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA, 0, eraNeg1); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA, 0, era1); + + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 - 1, Timestamp64.MAX_SECONDS_IN_ERA, -1); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA - 1, + Timestamp64.MAX_SECONDS_IN_ERA, eraNeg2); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA - 1, + Timestamp64.MAX_SECONDS_IN_ERA, era0); + + assertInstantCreationOnlySeconds(-Timestamp64.OFFSET_1900_TO_1970 + 1, 1, era0); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 - Timestamp64.SECONDS_IN_ERA + 1, 1, eraNeg1); + assertInstantCreationOnlySeconds( + -Timestamp64.OFFSET_1900_TO_1970 + Timestamp64.SECONDS_IN_ERA + 1, 1, era1); + + assertInstantCreationOnlySeconds(0, Timestamp64.OFFSET_1900_TO_1970, era0); + assertInstantCreationOnlySeconds( + -Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, eraNeg1); + assertInstantCreationOnlySeconds( + Timestamp64.SECONDS_IN_ERA, Timestamp64.OFFSET_1900_TO_1970, era1); + + assertInstantCreationOnlySeconds(1, Timestamp64.OFFSET_1900_TO_1970 + 1, era0); + assertInstantCreationOnlySeconds( + -Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, eraNeg1); + assertInstantCreationOnlySeconds( + Timestamp64.SECONDS_IN_ERA + 1, Timestamp64.OFFSET_1900_TO_1970 + 1, era1); + + assertInstantCreationOnlySeconds(-1, Timestamp64.OFFSET_1900_TO_1970 - 1, era0); + assertInstantCreationOnlySeconds( + -Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, eraNeg1); + assertInstantCreationOnlySeconds( + Timestamp64.SECONDS_IN_ERA - 1, Timestamp64.OFFSET_1900_TO_1970 - 1, era1); + } + + private static void assertInstantCreationOnlySeconds( + long epochSeconds, long expectedNtpEraSeconds, int ntpEra) { + int nanosOfSecond = 0; + Instant instant = Instant.ofEpochSecond(epochSeconds, nanosOfSecond); + Timestamp64 timestamp = Timestamp64.fromInstant(instant); + assertEquals(expectedNtpEraSeconds, timestamp.getEraSeconds()); + + int expectedFractionBits = 0; + assertEquals(expectedFractionBits, timestamp.getFractionBits()); + + // Confirm the Instant can be round-tripped if we know the era. Also assumes the nanos can + // be stored precisely; 0 can be. + Instant roundTrip = timestamp.toInstant(ntpEra); + assertEquals(instant, roundTrip); + } + + @Test + public void testFromInstant_fractionHandling() { + // Try some values we know can be represented exactly. + assertInstantCreationOnlyFractionExact(0x0, 0); + assertInstantCreationOnlyFractionExact(0x80000000, 500_000_000L); + assertInstantCreationOnlyFractionExact(0x40000000, 250_000_000L); + + // Test the limits of precision. + assertInstantCreationOnlyFractionExact(0x00000006, 1L); + assertInstantCreationOnlyFractionExact(0x00000005, 1L); + assertInstantCreationOnlyFractionExact(0x00000004, 0L); + assertInstantCreationOnlyFractionExact(0x00000002, 0L); + assertInstantCreationOnlyFractionExact(0x00000001, 0L); + + // Confirm nanosecond storage / precision is within 1ns. + final boolean exhaustive = false; + for (int i = 0; i < NANOS_PER_SECOND; i++) { + Instant instant = Instant.ofEpochSecond(0, i); + Instant roundTripped = Timestamp64.fromInstant(instant).toInstant(0); + assertNanosWithTruncationAllowed(i, roundTripped); + if (!exhaustive) { + i += 999_999; + } + } + } + + private static void assertInstantCreationOnlyFractionExact( + int fractionBits, long expectedNanos) { + Timestamp64 timestamp64 = Timestamp64.fromComponents(0, fractionBits); + + final int ntpEra = 0; + Instant instant = timestamp64.toInstant(ntpEra); + + assertEquals(expectedNanos, instant.getNano()); + } + + private static void assertNanosWithTruncationAllowed(long expectedNanos, Instant instant) { + // Allow for < 1ns difference due to truncation. + long actualNanos = instant.getNano(); + assertTrue("expectedNanos=" + expectedNanos + ", actualNanos=" + actualNanos, + actualNanos == expectedNanos || actualNanos == expectedNanos - 1); + } + + @Test + public void testMillisRandomizationConstant() { + // Mathematically, we can say that to represent 1000 different values, we need 10 binary + // digits (2^10 = 1024). The same is true whether we're dealing with integers or fractions. + // Unfortunately, for fractions those 1024 values do not correspond to discrete decimal + // values. Discrete millisecond values as fractions (e.g. 0.001 - 0.999) cannot be + // represented exactly except where the value can also be represented as some combination of + // powers of -2. When we convert back and forth, we truncate, so millisecond decimal + // fraction N represented as a binary fraction will always be equal to or lower than N. If + // we are truncating correctly it will never be as low as (N-0.001). N -> [N-0.001, N]. + + // We need to keep 10 bits to hold millis (inaccurately, since there are numbers that + // cannot be represented exactly), leaving us able to randomize the remaining 22 bits of the + // fraction part without significantly affecting the number represented. + assertEquals(22, Timestamp64.SUB_MILLIS_BITS_TO_RANDOMIZE); + + // Brute force proof that randomization logic will keep the timestamp within the range + // [N-0.001, N] where x is in milliseconds. + int smallFractionRandomizedLow = 0; + int smallFractionRandomizedHigh = 0b00000000_00111111_11111111_11111111; + int largeFractionRandomizedLow = 0b11111111_11000000_00000000_00000000; + int largeFractionRandomizedHigh = 0b11111111_11111111_11111111_11111111; + + long smallLowNanos = Timestamp64.fromComponents( + 0, smallFractionRandomizedLow).toInstant(0).getNano(); + long smallHighNanos = Timestamp64.fromComponents( + 0, smallFractionRandomizedHigh).toInstant(0).getNano(); + long smallDelta = smallHighNanos - smallLowNanos; + long millisInNanos = 1_000_000_000 / 1_000; + assertTrue(smallDelta >= 0 && smallDelta < millisInNanos); + + long largeLowNanos = Timestamp64.fromComponents( + 0, largeFractionRandomizedLow).toInstant(0).getNano(); + long largeHighNanos = Timestamp64.fromComponents( + 0, largeFractionRandomizedHigh).toInstant(0).getNano(); + long largeDelta = largeHighNanos - largeLowNanos; + assertTrue(largeDelta >= 0 && largeDelta < millisInNanos); + + PredictableRandom random = new PredictableRandom(); + random.setIntSequence(new int[] { 0xFFFF_FFFF }); + Timestamp64 zero = Timestamp64.fromComponents(0, 0); + Timestamp64 zeroWithFractionRandomized = zero.randomizeSubMillis(random); + assertEquals(zero.getEraSeconds(), zeroWithFractionRandomized.getEraSeconds()); + assertEquals(smallFractionRandomizedHigh, zeroWithFractionRandomized.getFractionBits()); + } + + @Test + public void testRandomizeLowestBits() { + Random random = new Random(1); + { + int fractionBits = 0; + expectIllegalArgumentException( + () -> Timestamp64.randomizeLowestBits(random, fractionBits, -1)); + expectIllegalArgumentException( + () -> Timestamp64.randomizeLowestBits(random, fractionBits, 0)); + expectIllegalArgumentException( + () -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE)); + expectIllegalArgumentException( + () -> Timestamp64.randomizeLowestBits(random, fractionBits, Integer.SIZE + 1)); + } + + // Check the behavior looks correct from a probabilistic point of view. + for (int input : new int[] { 0, 0xFFFFFFFF }) { + for (int bitCount = 1; bitCount < Integer.SIZE; bitCount++) { + int upperBitMask = 0xFFFFFFFF << bitCount; + int expectedUpperBits = input & upperBitMask; + + Set<Integer> values = new HashSet<>(); + values.add(input); + + int trials = 100; + for (int i = 0; i < trials; i++) { + int outputFractionBits = + Timestamp64.randomizeLowestBits(random, input, bitCount); + + // Record the output value for later analysis. + values.add(outputFractionBits); + + // Check upper bits did not change. + assertEquals(expectedUpperBits, outputFractionBits & upperBitMask); + } + + // It's possible to be more rigorous here, perhaps with a histogram. As bitCount + // rises, values.size() quickly trend towards the value of trials + 1. For now, this + // mostly just guards against a no-op implementation. + assertTrue(bitCount + ":" + values.size(), values.size() > 1); + } + } + } + + private static void expectIllegalArgumentException(Runnable r) { + try { + r.run(); + fail(); + } catch (IllegalArgumentException e) { + // Expected + } + } +}